Analysis of the performance of a particle velocity sensor between two cylindrical obstructions


Honschoten, J.W. van and Yntema, D.R. and Svetovoy, V. and Dijkstra, M.A. and Wiegerink, R.J. and Elwenspoek, M. (2007) Analysis of the performance of a particle velocity sensor between two cylindrical obstructions. Journal of the Acoustical Society of America, 121 (5). pp. 2711-2722. ISSN 0001-4966

open access
Abstract:The performance of an acoustic particle velocity sensor that is placed between two cylindrical objects has been analyzed both analytically and by means of finite volume simulations on fluid dynamics. The results are compared with acoustic experiments that show a large magnification of the output signal of the particle velocity sensor due to the mounting of the sensor between two cylinders. The influences of this construction consist of an attenuation of particle velocities at frequencies below a few hertz, whereas signals in the higher frequency range are amplified, up to approximately three times 10 dB in a frequency range between 50 and 1000 Hz. The theoretical analysis is based on the derivation of the stream function for the situation of two long cylinders immersed in an oscillating incompressible viscous fluid, at low Reynolds numbers. The results lead to an improved insight into the effects of viscosity and fluid flow that play a role in acoustic measurements and open the way for further optimization of the sensitivity of the sensor.
Item Type:Article
Copyright:© 2007 Acoustical Society of America
Electrical Engineering, Mathematics and Computer Science (EEMCS)
Research Group:
Link to this item:
Official URL:
Export this item as:BibTeX
HTML Citation
Reference Manager


Repository Staff Only: item control page

Metis ID: 241621