Otto, Friedrich (D-KSSL-MI); Narendran, Paliath (I-SUNYA-PG)

Codes modulo finite monadic string-rewriting systems.
(English. English summary)
Second International Colloquium on Words, Languages and
Combinatorics (Kyoto, 1992).

Let T be a string-rewriting system on the alphabet Σ, and let \leftrightarrow^*_T denote the Thue congruence on Σ^* induced by T. T is “confluent” if $x \leftrightarrow^*_T y$ implies that x and y have a common descendant; T is “λ-confluent” if T is confluent on the congruence class $[\lambda]_T$, where λ is the empty word. A string-rewriting system T is “length-reducing” if the right-hand side of each rule is strictly shorter than its left-hand side. And T is called “monadic” (“special”) if T is length-reducing and each right-hand side has length at most 1 [at most 0, respectively].

A language L over Σ is called a code modulo a string-rewriting system T, if for all words $v_1, v_2, \ldots, v_k, w_1, w_2, \ldots, w_m$ in $L, v_1 v_2 \cdots v_k \leftrightarrow^*_T w_1 w_2 \cdots w_m$ implies that $k = m$ and $v_i = w_i$ for $i = 1, \ldots, k$.

The authors prove that for a finite string-rewriting system T, it is decidable whether a regular language is a code modulo T, in the cases (i) T is monadic and confluent, and (ii) T is special and λ-confluent.

{For the entire collection see MR1299361 (95e:68002)}

Peter R. J. Asveld (NL-TWEN-C)