On the problem of generating small convergent systems.

(English. English summary)

Let Σ be an alphabet and Σ^* the set of all words over Σ including the empty word. If $>_l$ is a total order on Σ and $>_\text{lex}$ the induced lexicographical ordering on Σ^*, then the “length-lexicographical ordering” $>_l$ on Σ^* is defined by: $u >_l v \iff |u| > |v|$ or $(|u| = |v|$ and $u > v$).

Here $|x|$ is the length of the word x.

A “string-rewriting system” R on Σ is a subset of $\Sigma^* \times \Sigma^*$ and its size equals $\sum_{(x,y) \in R} (|x| + |y|)$. Let \Rightarrow denote the rewrite relation of R and \Rightarrow^* its reflexive and transitive closure. R is called “convergent” if (i) R is Noetherian, i.e., there is no infinite sequence of rewrite steps, and (ii) R is confluent, i.e., for all $u, v, w \in \Sigma^*$, $u \Rightarrow^* v$ and $u \Rightarrow^* w$ imply that v and w have a common descendant. A string u is “irreducible” with respect to R if $u \Rightarrow v$ holds for no string v. R is “normalized” if for each rule (x, y) in R, y is irreducible with respect to R and x is irreducible with respect to $R - \{(x, y)\}$.

The authors establish the existence of a sequence $(R_{n,m})_{n, m \in \mathbb{N}}$ of normalized string-rewriting systems on a fixed alphabet Σ such that for all $n, m \in \mathbb{N}$, (1) $R_{n,m}$ contains 44 rules, is of size $O(n + m)$ and is compatible with $>_l$, i.e., $(x, y) \in R$ implies $x >_l y$; (2) given $R_{n,m}$ and $>_l$ as input, the Knuth-Bendix completion procedure will generate more than $A(n, m)$ intermediate rules before a finite convergent system $S_{n,m}$ of size $O(n + m)$ is delivered. (A denotes Ackermann’s function.)

Peter R. J. Asveld (NL-TWEN-C)