Optimal picking of large orders in carousel systems


Litvak, N. (2004) Optimal picking of large orders in carousel systems. [Report]

open access
Abstract:A carousel is an automated storage and retrieval system which consists of a circular disk with a large number of shelves and drawers along its circumference. The disk can rotate either direction past a picker who has a list of items that have to be collected from $n$ different drawers. In this paper, we assume that locations of the $n$ items are independent and have a continous non-uniform distribution over the carousel circumference. For this model, we determine a limiting behavior of the shortest rotation time needed to collect one large order. In particular, our limiting result indicates that if an order is large, then it is optimal to allocate {\it less} frequently asked items {\it close} to the picker's starting position. This is in contrast with picking of small orders where the optimal allocation rule is clearly the opposite. We also discuss travel times and allocation issues for optimal picking of sequential orders.
Item Type:Report
Additional information:Imported from MEMORANDA
Electrical Engineering, Mathematics and Computer Science (EEMCS)
Research Group:
Link to this item:http://purl.utwente.nl/publications/65920
Export this item as:BibTeX
HTML Citation
Reference Manager


Repository Staff Only: item control page

Metis ID: 218606