The Ramsey numbers of large star-like trees versus large odd wheels

Share/Save/Bookmark

Surahmat and Baskoro, E.T. and Broersma, H.J. (2002) The Ramsey numbers of large star-like trees versus large odd wheels. [Report]

[img]
Preview
PDF
249Kb
Abstract:
For two given graphs $G$ and $H$, the \textit{Ramsey number} $R(G,H)$ is the smallest positive integer $N$ such that for every graph $F$ of order $N$ the following holds: either $F$ contains $G$ as a subgraph or the complement of $F$ contains $H$ as a subgraph. In this paper, we shall study the Ramsey number $R(T_n,W_{m})$ for a star-like tree $T_n$ with $n$ vertices and a wheel $W_m$ with $m+1$ vertices and $m$ odd. We show that the Ramsey number $R(S_{n},W_{m})=3n-2 $ for $n\geq 2m-4, m\geq 5$ and $m$ odd, where $S_n$ denotes the star on $n$ vertices. We conjecture that the Ramsey number is the same for general trees on $n$ vertices, and support this conjecture by proving it for a number of star-like trees.
Item Type:Report
Faculty:
Electrical Engineering, Mathematics and Computer Science (EEMCS)
Research Group:
Link to this item:http://purl.utwente.nl/publications/65808
Export this item as:BibTeX
EndNote
HTML Citation
Reference Manager

 

Repository Staff Only: item control page