Toughness and hamiltonicity in $k$-trees

Share/Save/Bookmark

Broersma, H.J. and Xiong, L. and Yoshimoto, K. (2001) Toughness and hamiltonicity in $k$-trees. [Report]

[img]
Preview
PDF
126kB
Abstract:We consider toughness conditions that guarantee the existence of a hamiltonian cycle in $k$-trees, a subclass of the class of chordal graphs. By a result of Chen et al.\ 18-tough chordal graphs are hamiltonian, and by a result of Bauer et al.\ there exist nontraceable chordal graphs with toughness arbitrarily close to $\frac{7}{4}$. It is believed that the best possible value of the toughness guaranteeing hamiltonicity of chordal graphs is less than 18, but the proof of Chen et al.\ indicates that proving a better result could be very complicated. We show that every 1-tough 2-tree on at least three vertices is hamiltonian, a best possible result since 1-toughness is a necessary condition for hamiltonicity. We generalize the result to $k$-trees for $k\ge 2$: Let $G$ be a $k$-tree. If $G$ has toughness at least $\frac{k+1}{3},$ then $G$ is hamiltonian. Moreover, we present infinite classes of nonhamiltonian 1-tough $k$-trees for each $k\ge 3$
Item Type:Report
Additional information:Imported from MEMORANDA
Faculty:
Electrical Engineering, Mathematics and Computer Science (EEMCS)
Research Group:
Link to this item:http://purl.utwente.nl/publications/65763
Export this item as:BibTeX
EndNote
HTML Citation
Reference Manager

 

Repository Staff Only: item control page