On minimum degree conditions for supereulerian graphs

Share/Save/Bookmark

Broersma, H.J. and Xiong, L. (1999) On minimum degree conditions for supereulerian graphs. [Report]

[img]
Preview
PDF
137Kb
Abstract:
A graph is called supereulerian if it has a spanning closed trail. Let $G$ be a 2-edge-connected graph of order $n$ such that each minimal edge cut $E \subseteq E (G)$ with $|E| \le 3$ satisfies the property that each component of $G-E$ has order at least $(n-2)/5$. We prove that either $G$ is supereulerian or $G$ belongs to one of two classes of exceptional graphs. Our results slightly improve earlier results of Catlin and Li. Furthermore our main result implies the following strengthening of a theorem of Lai within the class of graphs with minimum degree $\delta\ge 4$: If $G$ is a 2-edge-connected graph of order $n$ with $\delta (G)\ge 4$ such that for every edge $xy\in E (G)$ , we have $\max \{d(x),d(y)\} \ge (n-7)/5$, then either $G$ is supereulerian or $G$ belongs to one of two classes of exceptional graphs. We show that the condition $\delta(G)\ge 4$ cannot be relaxed.
Item Type:Report
Faculty:
Electrical Engineering, Mathematics and Computer Science (EEMCS)
Research Group:
Link to this item:http://purl.utwente.nl/publications/65695
Export this item as:BibTeX
EndNote
HTML Citation
Reference Manager

 

Repository Staff Only: item control page