Some studies on the deformation of the membrane in an RF MEMS switch


Ambati, V.R. and Asheim, A. and Berg, J.B. van den and Gennip, Y. van and Gerasimov, T. and Hlod, A. and Planqué, B. and Schans, M. van der and Stelt, S. van der and Vargas Rivera, M. and Vondenhoff, E. (2008) Some studies on the deformation of the membrane in an RF MEMS switch. In: Proceedings of the 63rd European Study Group Mathematics with Industry, 28 Jan - 1 Feb 2008, Enschede, The Netherlands (pp. pp. 65-84).

open access
Abstract:Radio Frequency (RF) switches of Micro Electro Mechanical Systems (MEMS) are appealing to the mobile industry because of their energy efficiency and ability to accommodate more frequency bands. However, the electromechanical coupling of the electrical circuit to the mechanical components in RF MEMS switches is not fully understood.
In this paper, we consider the problem of mechanical deformation of electrodes in RF MEMS switch due to the electrostatic forces caused by the difference in voltage between the electrodes. It is known from previous studies of this problem, that the solution exhibits multiple deformation states for a given electrostatic force. Subsequently, the capacity of the switch that depends on the deformation of electrodes displays a hysteresis behaviour against the voltage in the switch.
We investigate the present problem along two lines of attack. First, we solve for the deformation states of electrodes using numerical methods such as finite difference and shooting methods. Subsequently, a relationship between capacity and voltage of the RF MEMS switch is constructed. The solutions obtained are exemplified using the continuation and bifurcation package AUTO. Second, we focus on the analytical methods for a simplified version of the problem and on the stability analysis for the solutions of deformation states. The stability analysis shows that there exists a continuous path of equilibrium deformation states between the open and closed state.
Item Type:Conference or Workshop Item
Electrical Engineering, Mathematics and Computer Science (EEMCS)
Research Group:
Link to this item:
Official URL:
Export this item as:BibTeX
HTML Citation
Reference Manager


Repository Staff Only: item control page

Metis ID: 255156