Analysis of the angular sensitivity of an innovative particle velocity sensor

J.W. van Honschoten, D.R. Yntema, R.J. Wiegerink, M. Elwenspoek
MESA+ Research Institute, University of Twente, The Netherlands
j.w.vanhonschoten@utwente.nl

Abstract—In this paper a novel micromachined acoustic sensor consisting of four heated wires is analyzed theoretically and experimentally. The presence of the chip surface of the probe in the vicinity of the wires influences the local fluid flow, while it also affects the temperature distribution in the probe by altering the direction of heat transport. Both effects result into a specific angular dependence of the sensor sensitivity. To explain this specific directionality of the sensitivity, an analytical model is presented that describes both the air flow around the probe and the temperature profile around the heated wires. Acoustic flow measurements on the probe sensitivity are compared with the theory and with numerical simulations on the device, showing good qualitative and quantitative correspondence.

I. INTRODUCTION

For a complete characterization of a three-dimensional sound field, both the acoustic particle velocity and the pressure have to be determined. By means of a particle velocity sensor complementary to the conventional pressure microphone, a complete determination of the three-dimensional acoustic field, including intensity streamlines and different source contributions becomes possible. To this purpose a micromachined particle velocity sensor, composed of two parallel heated wires, of about 1 mm length and spaced about 300 µm apart, has been developed [1,2,3,4]. When subject to an acoustic flow, forces convection leads to a small temperature difference between the wires, which is a measure of the particle velocity. To exploit fully its abilities to measure the three-dimensional particle velocity vector, we designed a new device in which four hot-wires in perpendicular directions are integrated in one probe [5] (Fig. 1).

For a very accurate determination of the direction of the involved particle velocities, a good understanding of the directional sensitivity of the probe is needed. However, the current designs show a deviation in their directional sensitivity pattern from the ideal ‘figure-of eight’ response [2, 6] that would be the case for free standing wires. Up to now, this deviation has not been fully understood. The purpose of this paper is to analyze this effect and to model the sensitivity for the four wire probe, with the sensor wires placed within a square orifice in the chip surface. In the analysis we take into account all physical aspects that play a role: both the acoustic flow profile around the wires, that is disturbed due to the presence of the printed circuit board acting as a disturbance for the flow, and the local temperature distribution close to the heaters. The chip surface acts as a heat sink that affects the heat transport due to convection and consequently influences the sensor response to particle velocities. We present an analytical model for the directional sensitivity of this novel device, and compare this with experiments and numerical calculations on the flow and temperature distribution in the probe.

II. EXPERIMENTAL OBSERVATIONS

The particle velocity sensor of investigation, shown in Fig. 1, consists of four thin wires (1 mm long silicon nitride...
For wires in free space, without any obstructions, the angular sensitivity is shown in Fig. 3. To determine the sensitivity of the probe as a function of the angle of the incoming wave, the device is mounted in an electrostatic step motor, placed in the standing wave tube, and rotated in steps of 3.75°. The measured polar diagram of the angular sensitivity is shown in Fig. 3.

For wires in free space, without any obstructions, the polar representation of the sensitivity resembles a figure-of-eight [2, 6]. Ideally, the wires of the probe would therefore also show a figure-of-eight pattern, with the long axis of the eight under an angle of 45° (since the wires are mutually placed under an angle of 45° with the probe surface, as illustrated by Fig. 1 and 2.) However, it is clearly seen in the polar diagram of Fig. 3, that the figure is rotated with respect to the ideal figure-of-eight; the measured angular shift Δ is approximately 18°. The measurements show further that this polar pattern is nearly frequency independent in the range from 50-1000 Hz for all investigated probes.

The reason for the observed angular shift can be explained by different effects. As suggested above, both the influence of the surrounding chip material on the temperature distribution around the wires, and the effect of the chip material on the flow profile in the probe, can play a role. To test this hypothesis and to distinguish between the temperature induced and flow induced effects, different series of probes have been designed. In the theoretical section, part III, we can then analyze the data and check the proposed theoretical model.

Two different series of probes have been fabricated, one set with silicon as the surrounding material, and the other with balsa wood. This material has been chosen because of its extremely low heat conductivity compared to that of silicon. Each set of probes comprises of devices with varying gap distances, with the full gap 2l distance (the width of the orifice) varying between 0.4 and 2.0 mm. All probes are analyzed in the standing wave tube and the shift Δ of their polar sensitivity is determined. The result is shown in Fig. 4, in which Δ is plotted versus the gap distance. We see that the balsa based probes show significantly less temperature-related effects, resulting in a smaller angular shift. Also depicted in the figure are the curves according to theoretical calculations and to the numerical analysis as described in the next sections.

III. THEORY

Ideally, the two parallel heated wires of a particle velocity sensor exhibit a cos(θ)-dependent response to a fluid flow imposed under an angle θ with the plane of the wires, since the sensor wires detect the velocity component directed in the plane of the wires only. This cos(θ) angular dependence on the incoming flow leads to the above mentioned ‘figure-of-eight’ response. As the measurements show, the polar diagram of the sensitivity of the probe is rotated over a frequency independent angle Δ, with Δ depending on the geometry of the device and heat conducting properties of the surrounding material of the device. We distinguish the two possible causes for the observed effect: First, the presence of the chip surface in the close proximity of the wires disturbs the air flow, thereby altering the direction of the local particle velocity. Second, the silicon chip acts as a ‘heat sink’ resulting in a preferred direction of the heat flow generated.
where \(k = k(T) \) is the thermal conductivity of air, that is in principle a function of temperature, and \(Q \) the heat produced by the heater per unit volume per unit time. We now solve the static temperature \(T(x, z) \) for the geometry as shown in Fig. 5. Taking into account the appropriate boundary conditions for \(T \) and the heat flux at \(x = \pm l_n \) we can obtain an expression for the temperature in the device as an expansion in harmonics in normalized variables \(\zeta = x/l_n \), \(\zeta = z/l_n \). The resulting expansion converges quickly and can be easily calculated numerically. For a specific set of parameters the temperature distribution is shown in Fig. 6, also compared with numerical simulations described in section IV. The thus obtained static temperature profile is the required starting point to find the sensitivity \(S \) of the device and its response to an acoustic gas flow. If due to an acoustic wave the gas close to the heaters has a velocity \(v \), the temperature around the wires is described by the full heat equation

\[
\rho c_p \left(\frac{\partial T}{\partial t} + v \nabla T \right) - \nabla (k \nabla T) = Q \tag{2}
\]

where \(c_p \) is the gas heat capacity at constant pressure. The convective term is responsible for the difference in wire temperatures. For small \(v \), the solution of this equation is formed by the previously found temperature plus a small correction \(\delta T \) proportional to \(v \cdot \nabla T \), with \(T \) the previously obtained static temperature [7, 9]. The sensitivity \(S \) is proportional to \(\delta T \) and we obtain an expression for the angular dependence \(S(\theta) \), with \(\theta \) the angle of the incident flow. We find then that the polar representation of \(S(\theta) \), the polar figure, is shifted with respect to the ‘ideal’ figure-of-eight of the sensitivity of free standing wires, by an angle \(\Delta \) and that \(\Delta \) is fully determined by the ratio of the \(x \)-and \(z \)-derivatives of \(T \) at the wires (Fig. 3). The calculated shift \(\Delta \), due to this temperature effect, as a function of the gap distance is shown in Fig. 4 by the black dotted line.

Figure 5. Cross-sectional view of the model geometry for the calculation of the temperature distribution. The thickness of the substrate (the chip) is \(d \); its full width is \(2D \), the horizontal distance between the wires is also \(d \).

Figure 6. Temperature distribution in the channel along the normalised \(x \)-axes, according to the calculated expansion for \(T \) with \(\zeta = 0.2 \), \(l = 1 \) mm and \(l = 1.5 \) mm. For comparison, results from numerical simulations (section IV) are also shown. The temperatures are normalised by \(T_0 \), the temperature at the place of the heaters.

by the sensor wires, to the silicon. Consequently, the temperature distribution around the wires is not completely symmetric anymore as it would be for wires in free space. The purpose of this section is therefore to model both the temperature and the flow profile in the probe.

A. The temperature profile

To analyze the response of the sensor due to an imposed acoustic flow, the temperature profile around the heated wires has to be calculated. At first, the static temperature distribution in the device is calculated, in the absence of a gas flow. It has been proven [7, 8] that an acoustic wave gives only a small perturbation to this temperature profile, and also that the output signal of the sensor is linearly proportional to the local temperature gradient at the place of the sensor wires. Therefore, the static temperature distribution only, provides sufficient information to deduce the sensitivity properties we are interested in in this paper, in particular the directionality (the polar dependence) of the sensitivity of the device.

In the absence of a moving gas, the temperature distribution around the wires follows from the stationary heat equation

\[
- \nabla (k \nabla T) = Q \tag{1}
\]

Figure 7. Calculated streamline pattern in the normalized \(x-z \)-plane (see the cross section of Fig. 5) for an incident flow with an angle of incidence \(\theta = \pi/8 \), and a normalized gap distance of the probe equal to 2.

B. The air flow around the probe

Due to the presence of the chip surface, the fluid flow itself is influenced as well, and the local angle \(\theta \) will in general not be equal to the angle of incidence of the acoustic wave far away from the probe. To analyse therefore the air flow around the probe, one should solve the full Navier-Stokes equations...
were investigated. Additionally, to comply with the different devices analyzed in the experiments, the heat conductivity of the chip material was varied in the simulations, ranging from the heat conductivity of air, $k_{av} = 0.0263 \text{ W/m K}$, to that of silicon, $k_S = 130 \text{ W/m K}$, in five linear steps. The results of the numerical calculations on two suchlike probes are illustrated by Fig. 8.

A comparative summary of numerical, theoretical and experimental results is presented in Fig. 4. It shows a satisfying correspondence between the theory and the simulations and both are in good agreement with the experimental observations. Besides, it is seen that both the temperature and flow effect play a significant role in the directional sensitivity, whereas the latter effect is dominant.

V. CONCLUSIONS

The sensitivity of a novel micromachined acoustic sensor consisting of four heated wires was analyzed theoretically and experimentally. The presented model is seen to be appropriate to describe the angular dependence and the magnitude of the sensor response and in satisfying correspondence with simulations and experiments. Besides, the observed angular dependence of the sensitivity is frequency independent and can therefore easily be corrected for. It is also concluded that the perturbed air flow due to the chip surface is the dominant reason for the observed angular sensitivity. The obtained results allow as well for an optimization of the device.

REFERENCES

