An Online Outlier Detection Technique for Wireless Sensor Networks using Unsupervised Quarter-Sphere Support Vector Machine


Share/Save/Bookmark

Zhang, Yang and Meratnia, N. and Havinga, P.J.M. (2008) An Online Outlier Detection Technique for Wireless Sensor Networks using Unsupervised Quarter-Sphere Support Vector Machine. In: Fourth International Conference on Intelligent Sensors, Sensor Networks and Information Processing, ISSNIP 2008, 15-18 Dec 2008, Sydney, Australia.

[img]PDF
270Kb
Abstract:The main challenge faced by outlier detection techniques designed for wireless sensor networks is achieving high detection rate and low false alarm rate while maintaining the resource consumption in the network to a minimum. In this paper, we propose an online outlier detection technique with low computational complexity and memory usage based on an unsupervised centered quarter-sphere support vector machine for real-time environmental monitoring applications of wireless sensor networks. The proposed approach is completely local and thus saves communication overhead and scales well with increase of nodes deployed. We take advantage of spatial correlations that exist in sensor data of adjacent nodes to reduce the false alarm rate in real-time. Experiments with both synthetic and real data collected from the Intel Berkeley Research Laboratory show that our technique achieves better mining performance in terms of parameter selection using different kernel functions compared to an earlier offline outlier detection technique designed for wireless sensor networks.
Item Type:Conference or Workshop Item
Faculty:
Electrical Engineering, Mathematics and Computer Science (EEMCS)
Research Group:
Link to this item:http://purl.utwente.nl/publications/65225
Export this item as:BibTeX
EndNote
HTML Citation
Reference Manager

 

Repository Staff Only: item control page

Metis ID: 255014