Binary Biometrics: An Analytic Framework to Estimate the Bit Error Probability under Gaussian Assumption


Share/Save/Bookmark

Kelkboom, E.J.C. and Molina, G. and Kevenaar, T.A.M. and Veldhuis, R.N.J. and Jonker, W. (2008) Binary Biometrics: An Analytic Framework to Estimate the Bit Error Probability under Gaussian Assumption. In: Biometrics: Theory, Applications and BTAS 2008. 2nd IEEE International Conference on Biometrics: Theory Applications and Systems, 2008., 29 Sep - 1 Oct 2008, Washington, USA (pp. pp. 1-6).

open access
[img]
Preview
PDF
6MB
Abstract:In recent years the protection of biometric data has gained increased interest from the scientific community. Methods such as the helper data system, fuzzy extractors, fuzzy vault and cancellable biometrics have been proposed for protecting biometric data. Most of these methods use cryptographic primitives and require a binary representation from the real-valued biometric data. Hence, the similarity of biometric samples is measured in terms of the Hamming distance between the binary vector obtained at the enrolment and verification phase. The number of errors depends on the expected error probability Pe of each bit between two biometric samples of the same subject. In this paper we introduce a framework for analytically estimating Pe under the assumption that the within-and between-class distribution can be modeled by a Gaussian distribution. We present the analytic expression of Pe as a function of the number of samples used at the enrolment (Ne) and verification (Nv) phases. The analytic expressions are validated using the FRGC v2 and FVC2000 biometric databases.
Item Type:Conference or Workshop Item
Faculty:
Electrical Engineering, Mathematics and Computer Science (EEMCS)
Research Group:
Link to this item:http://purl.utwente.nl/publications/65219
Official URL:http://dx.doi.org/10.1109/BTAS.2008.4699349
Export this item as:BibTeX
EndNote
HTML Citation
Reference Manager

 

Repository Staff Only: item control page

Metis ID: 256133