An SVD-approach to Jacobi-Davidson solution of nonlinear Helmholtz eigenvalue problems


Botchev, M.A. and Sleijpen, G.L.G. and Sopaheluwakan, A. (2008) An SVD-approach to Jacobi-Davidson solution of nonlinear Helmholtz eigenvalue problems. [Report]

open access
Abstract:Numerical solution of the Helmholtz equation in an infinite domain often involves restriction of the domain to a bounded computational window where a numerical solution method is applied. On the boundary of the computational window artificial transparent boundary conditions are posed, for example, widely used perfectly matched layers (PMLs) or absorbing boundary conditions (ABCs). Recently proposed transparent-influx boundary conditions (TIBCs) resolve a number of drawbacks typically attributed to PMLs and ABCs, such as introduction of spurious solutions and the inability to have a tight computational window. Unlike the PMLs or ABCs, the TIBCs lead to a nonlinear dependence of the boundary integral operator on the frequency. Thus, a nonlinear Helmholtz eigenvalue problem arises.
This paper presents an approach for solving such nonlinear eigenproblems which is based on a truncated singular value decomposition (SVD) polynomial approximation of the nonlinearity and subsequent solution of the obtained approximate polynomial eigenproblem with the Jacobi-Davidson method.
Item Type:Report
Additional information:Please note different possible spellings of the first author name: "Bochev" or "Botchev".
Copyright:© 2008 University of Twente, Department of Applied Mathematics
Electrical Engineering, Mathematics and Computer Science (EEMCS)
Research Group:
Link to this item:
Official URL:
Export this item as:BibTeX
HTML Citation
Reference Manager


Repository Staff Only: item control page

Metis ID: 251205