The Subthalamic Nucleus

Part II: Modelling and Simulation of Activity
Reviews and critical articles covering the entire field of normal anatomy (cytology, histology, cyto- and histochemistry, electron microscopy, macroscopy, experimental morphology and embryology and comparative anatomy) are published in Advances in Anatomy, Embryology and Cell Biology. Papers dealing with anthropology and clinical morphology that aim to encourage cooperation between anatomy and related disciplines will also be accepted. Papers are normally commissioned. Original papers and communications may be submitted and will be considered for publication provided they meet the requirements of a review article and thus fit into the scope of “Advances”. English language is preferred.

It is a fundamental condition that submitted manuscripts have not been and will not simultaneously be submitted or published elsewhere. With the acceptance of a manuscript for publication, the publisher acquires full and exclusive copyright for all languages and countries.

Twenty-five copies of each paper are supplied free of charge.

Manuscripts should be addressed to

Prof. Dr. F. BECK, Howard Florey Institute, University of Melbourne, Parkville, 3000 Melbourne, Victoria, Australia
e-mail: fb22@le.ac.uk

Prof. Dr. F. CLASCÁ, Department of Anatomy, Histology and Neurobiology, Universidad Autónoma de Madrid, Ave. Arzobispo Morcillo s/n, 28029 Madrid, Spain
e-mail: francisco.clasca@uam.es

Prof. Dr. M. FROTSCHER, Institut für Anatomi und Zellbiologie, Abteilung für Neuroanatomie, Albert-Ludwigs-Universität Freiburg, Albertstr. 17, 79001 Freiburg, Germany
e-mail: michael.frotscher@anat.uni-freiburg.de

Prof. Dr. D.E. HAINES, Ph.D., Department of Anatomy, The University of Mississippi Med. Ctr., 2500 North State Street, Jackson, MS 39216–4505, USA
e-mail: dhaines@anatomy.umsmed.edu

Prof. Dr. N. HIROKAWA, Department of Cell Biology and Anatomy, University of Tokyo, Hongo 7–3–1, 113-0033 Tokyo, Japan
e-mail: hirokawa@m.u-tokyo.ac.jp

Dr. Z. KMIEC, Department of Histology and Immunology, Medical University of Gdansk, Debinki 1, 80-211 Gdansk, Poland
e-mail: zkmiec@amg.gda.pl

Prof. Dr. H.-W. KORF, Zentrum der Morphologie, Universität Frankfurt, Theodor-Stern Kai 7, 60595 Frankfurt/Main, Germany
e-mail: korf@em.uni-frankfurt.de

Prof. Dr. E. MARANI, Department Biomedical Signal and Systems, University Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
e-mail: e.marani@utwente.nl

Prof. Dr. R. PUTZ, Anatomische Anstalt der Universität München, Lehrstuhl Anatomie I, Pettenkoferstr. 11, 80336 München, Germany
e-mail: reinhard.putz@med.uni-muenchen.de

Prof. Dr. Dr. h.c. Y. SANO, Department of Anatomy, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, 602 Kyoto, Japan

Prof. Dr. Dr. h.c. T.H. SCHIEBLER, Anatomisches Institut der Universität, Koellikerstraße 6, 97070 Würzburg, Germany

Prof. Dr. J.-P. TIMMERMANS, Department of Veterinary Sciences, University of Antwerpen, Groenenborgerlaan 171, 2020 Antwerpen, Belgium
e-mail: jean-pierre.timmermans@ua.ac.be
199
Advances in Anatomy, Embryology and Cell Biology

Editors
F. Beck, Melbourne · F. Clascá, Madrid
M. Frotscher, Freiburg · D.E. Haines, Jackson
N. Hirokawa, Tokyo · Z. Kmiec, Gdansk
H.-W. Korf, Frankfurt · E. Marani, Enschede
R. Putz, München · Y. Sano, Kyoto
T.H. Schiebler, Würzburg
J.-P. Timmermans, Antwerpen
Tjitske Heida, Enrico Marani, and Kamen G. Usunoff

The Subthalamic Nucleus Part II: Modelling and Simulation of Activity

With 54 Figures

Springer
Tjitske Heida
Enrico Marani
Department of Biomedical Signals and Systems, University of Twente, 7500 AE Enschede, The Netherlands
e-mail: t.heida@el.utwente.nl
e-mail: e.marani@utwente.nl

Kamen G. Usunoff
Department of Anatomy & Histology, Medical University Sofia, 1431 Sofia, Bulgaria
e-mail: uzunoff@medfac.acad.bg
List of Contents

1 Introduction .. 1

2 The Basal Ganglia .. 1
 2.1 Pathways Within the Basal Ganglia 2
 2.1.1 Direct Pathway 2
 2.1.2 Indirect Pathway 2
 2.1.3 Hyperdirect Pathway 4
 2.1.4 Role of the Direct, Indirect, and Hyperdirect Pathways . 4
 2.1.5 Role of Dopamine in the Direct and Indirect Pathways 6
 2.1.6 Conduction Times of Pathways 6
 2.2 Parkinson's Disease 6
 2.2.1 Direct and Indirect Pathways in PD 7
 2.2.2 Changes in Neuronal Firing Rate in PD 8
 2.2.3 Changes in Neuronal Firing Pattern in PD 9
 2.3 Deep Brain Stimulation 9
 2.3.1 Which Neuronal Elements Are Influenced by DBS? 11
 2.3.2 Mechanisms of DBS: Hypotheses 11

3 STN Activity Recorded in Vitro: Brain Slices 14
 3.1 Spontaneous Activity 15
 3.1.1 Single-Spike Mode 15
 3.1.2 Burst-Firing Mode 17
 3.2 Depolarizing and Hyperpolarizing Inputs 19
 3.2.1 Plateau Potential 21
 3.2.2 Low-Threshold Spike 22
 3.3 Ionic Mechanisms of a Plateau Potential 23
 3.4 Synaptic Inputs 25
 3.5 High-Frequency Stimulation of STN Cells 26
 3.6 Intrinsic Versus Extrinsic Properties: Bursts 27
 3.6.1 Definition of Bursts 27
 3.6.2 Burst Detection Algorithms 28
 3.6.3 Network Bursts Using Burst and Phase Profiles 30

4 STN Activity Recorded in Vitro: Dissociated Cell Cultures 31
 4.1 Experimental Set-up 31
 4.1.1 Cell Culture 33
 4.1.2 Measurement Set-up 33
 4.2 Spontaneous Activity 33
Abstract

Part I of *The Subthalamic Nucleus* (volume 198) (STN) accentuates the gap between experimental animal and human information concerning subthalamic development, cytology, topography and connections. The light and electron microscopical cytology focuses on the open nucleus concept and the neuronal types present in the STN. The cytochemistry encompasses enzymes, NO, glial fibrillary acidic protein (GFAP), calcium binding proteins, and receptors (dopamine, cannabinoid, opioid, glutamate, γ-aminobutyric acid (GABA), serotonin, cholinergic, and calcium channels). The ontogeny of the subthalamic cell cord is also reviewed. The topography concerns the rat, cat, baboon and human STN. The descriptions of the connections are also given from a historical point of view. Recent tracer studies on the rat nigro-subthalamic connection revealed contralateral projections. This monograph (Part II of the two volumes) on the subthalamic nucleus (STN) starts with a systemic model of the basal ganglia to evaluate the position of the STN in the direct, indirect and hyperdirect pathways. A summary of in vitro studies is given, describing STN spontaneous activity as well as responses to depolarizing and hyperpolarizing inputs and high-frequency stimulation. STN bursting activity and the underlying ionic mechanisms are investigated. Deep brain stimulation used for symptomatic treatment of Parkinson's disease is discussed in terms of the elements that are influenced and its hypothesized mechanisms. This part of the monograph explores the pedunculopontine–subthalamic connections and summarizes attempts to mimic neurotransmitter actions of the pedunculopontine nucleus in cell cultures and high-frequency stimulation on cultured dissociated rat subthalamic neurons. STN cell models – single- and multi-compartment models and system-level models are discussed in relation to subthalamic function and dysfunction. Parts I and II are compared.