State-of-the-art of battery state-of-charge determination


Pop, V. and Bergveld, H.J. and Notten, P.H.L. and Regtien, P.P.L. (2005) State-of-the-art of battery state-of-charge determination. Measurement Science and Technology, 16 (12). R93-R110. ISSN 0957-0233

[img] PDF
Restricted to UT campus only
: Request a copy
Abstract:From the early days on, humanity has depended on electricity, a phenomenon without which our technological advancements would not have been possible. With the increased need for mobility, people moved to portable power storage—first for wheeled applications, then for portable and finally nowadays wearable use. Several types of rechargeable battery systems, including those of lead–acid, nickel–cadmium, nickel–metalhydride, lithium ion and lithium-ion polymer exist in the market. The most important of them will be discussed in this review.
Almost as long as rechargeable batteries exist, systems able to give an indication about the state-of-charge (SoC) of a battery have been around.
Several methods, including those of direct measurements, book-keeping and adaptive systems (Bergveld et al 2002 Battery Management Systems, Design by Modelling (Philips Research Book Series) vol 1 (Boston: Kluwer)) are known in the art for determining the SoC of a cell or battery of cells. An accurate SoC determination method and an understandable and reliable SoC display to the user will improve the performance and reliability, and will
ultimately lengthen the lifetime of the battery. However, many examples of poor accuracy and reliability can be found in practice (Bergveld et al 2002 Battery Management Systems, Design by Modelling (Philips Research Book
Series) vol 1 (Boston: Kluwer)). This review presents an overview on battery technology and the state-of-the-art of SoC methods. The goal of all the presented SoC indication methods is to design an SoC indication system capable to provide an accurate SoC indication under all realistic user
conditions, including those of spread—in both battery and user behaviour, a large temperature and current range and ageing of the battery.
Item Type:Article
Copyright:© 2005 Institute of Physics
Electrical Engineering, Mathematics and Computer Science (EEMCS)
Research Group:
Link to this item:
Official URL:
Export this item as:BibTeX
HTML Citation
Reference Manager


Repository Staff Only: item control page

Metis ID: 228696