Efficient Computation of Buffer Capacities for Cyclo-­Static Dataflow Graphs


Share/Save/Bookmark

Wiggers, Maarten H. and Bekooij, Marco J.G. and Smit, Gerard J.M. (2007) Efficient Computation of Buffer Capacities for Cyclo-­Static Dataflow Graphs. In: 44th Annual Conference on Design Automation, DAC, 4-8 June 2007, San Diego, California, USA (pp. pp. 658-663).

[img] PDF
Restricted to UT campus only
: Request a copy
207kB
Abstract:A key step in the design of cyclo-static real-time systems is the determination of buffer capacities. In our multi-processor system, we apply back-pressure, which means that tasks wait for space in output buffers. Consequently buffer capacities affect the throughput. This requires the derivation of buffer capacities that both result in a satisfaction of the throughput constraint, and also satisfy the constraints on the maximum buffer capacities. Existing exact solutions suffer from the computational complexity that is associated with the required conversion from a cyclo-static dataflow graph to a single-rate dataflow graph. In this paper we present an algorithm, with polynomial computational complexity, that does not require this conversion and that obtains close to minimal buffer capacities. The algorithm is applied to an MP3 play-back application that is mapped on our multi-processor system. For this application, we see that a cyclo-static dataflow model can reduce the buffer capacities by 50% compared to a multi-rate dataflow model.
Item Type:Conference or Workshop Item
Copyright:© 2007 ACM
Faculty:
Electrical Engineering, Mathematics and Computer Science (EEMCS)
Research Group:
Link to this item:http://purl.utwente.nl/publications/61918
Official URL:http://dx.doi.org/10.1109/DAC.2007.375247
Export this item as:BibTeX
EndNote
HTML Citation
Reference Manager

 

Repository Staff Only: item control page

Metis ID: 242198