Influence of Applied Potentials on Anisotropic Etching of Silicon Described Using Kinematic Wave Etch Model

Share/Save/Bookmark

Nguyen, Q.D. and Elwenspoek, M. (2007) Influence of Applied Potentials on Anisotropic Etching of Silicon Described Using Kinematic Wave Etch Model. Journal of the Electrochemical Society, 154 (12). D684-D691. ISSN 0013-4651

[img]PDF
Restricted to UT campus only
: Request a copy
973Kb
Abstract:Anisotropic etch rates of silicon in KOH solutions were studied as a function of an externally applied potential. A combination of three micromachined samples consisting of predry-etched wagon-wheel patterns and masked trench offset patterns was used to measure the etch rates at a large number of crystal orientations simultaneously. The measured data was described in terms of microscopic properties, including step velocities, terrace roughening, and step anisotropy, using the kinematic wave etch model. All parameters show distinct changes due to the applied potential and resulting additional electrochemical reaction path. A decrease in step velocity shows the electrochemical oxidation and subsequent passivation of the Si surface. Trends in terrace roughening show a minimum in roughness and a corresponding change in anisotropic etch-rate ratio at the non-open-circuit potential of −1250 mV vs saturated calomel electrode. The observed decrease in step anisotropy and subsequent step-anisotropy reversal at more positive potentials indicates an anisotropy in not only chemical etching but also electrochemical oxidation of (111) surface steps.
Item Type:Article
Copyright:The Electrochemical Society
Faculty:
Electrical Engineering, Mathematics and Computer Science (EEMCS)
Research Group:
Link to this item:http://purl.utwente.nl/publications/61693
Official URL:http://dx.doi.org/10.1149/1.2793698
Export this item as:BibTeX
EndNote
HTML Citation
Reference Manager

 

Repository Staff Only: item control page

Metis ID: 247796