described above. This compares well with the particle size of cigarette smoke, which Hinds (1978) has reported to be less than 1.0 μm. The mean particle size was constant when concentrations of up to 1.80 mg ml⁻¹ nicotine base in water were used, but as concentration increased, the variance increased to a maximum of 10 per cent.

The solution output was constant at 6.7 ml min⁻¹ over a period of 2 h. The concentration of nicotine in the collected aerosol was 0.45 mg ml⁻¹ (nicotine expressed as nicotine base), indicating no change from the original solution. This was verified by collecting and analysing the solution by gas chromatography (Jacob et al., 1981).

When a concentration of nicotine in water of 0.45 mg ml⁻¹ is used, the generator delivers 100 μg of nicotine every 2 s, allowing the inhalation of 100 μg of nicotine with each puff of aerosol. When 15 healthy male subjects were given the nicotine aerosol to inhale, the peak nicotine concentration in blood was 46 ± 7 nmoles l⁻¹ (mean ± SE). The peak blood levels detected varied from 25 to 117 nmoles l⁻¹. This compares well with the blood levels achieved after smoking a single cigarette. Values reported in the literature range from 5 to 30 ng ml⁻¹ or approximately 30 to 185 nmoles l⁻¹. This compares well with the blood levels achieved after smoking a single cigarette.

4 Conclusions

The nicotine aerosol generated using this system is suitable for use in studies of inhaled nicotine. The small particle size, low nicotine concentration, low flow rate and low pH make the aerosol easy to inhale. By adjusting the concentration of nicotine in the solution, the dose administered can be varied. The advantages of this system over other atomisers are that a submicrometre particle size is easily attained, the system does not become clogged, the other atomisers are that a submicrometre particle size is

ttered can be varied. The advantages of this system over

cotemporary toxicity of nicotine, the dose administered can be varied. The advantages of this system over

have the muscle connected to a defined mechanical load (Veltink et al., 1986). Physiological experiments on skeletal muscle contraction for FES mostly concern isometric contractions (Wilmer et al., 1985; Bernotas et al., 1986). Experiments with a defined dynamic mechanical load connected to the muscle are rare (Petrofsky and Phillips, 1979; Allin and Inbar, 1986a;b).
We have made a programmable dynamic load system for experiments on contraction control for hind limb muscles of small animals.

2 Principle of operation

A mechanical muscle load can be defined as a dynamic relationship between force \(F \) and position \(x \), where \(x \) is the position of the end of the muscle tendon that is connected to the mechanical load (Fig. 1). In this note a second-order load model will be used as an example:

\[
F = M \ddot{x} + D \dot{x} + Cx + F_a
\]

(1)

Model parameters are \(M \) (mass), \(D \) (damping constant), \(C \) (compliance) and \(F_a \) (antagonistic muscle force or offset force).

The load processor consists of a 6502 microprocessor system and an AM9511 floating-point mathematical co-processor. The load processor internally uses a 2 byte floating-point representation, because of the large differences in values to be used. The load simulator is controlled by an external computer, an LSI 11/23. Load algorithm and load parameters can be generated on this computer and downloaded to the load processor. This provides the possibility to realise different loads, using different simulation algorithms.

4 Results

Responses of the servo-controlled linear motor system to steps of 1-5 mm in the position signal have a risetime of about 5 ms and a settling time of about 15 ms.

The computing frequency \(f_c \) for the load model was taken as the same as the sample frequency of the force signal \(F \). With our load simulator the second-order load model (eqn. 1) can be computed up to 385 times per second \((f_{\text{max}} = 385\ \text{Hz})\). The bandwidth of a realistic load model \(f_{\text{RL}} \), and hence the bandwidth of the length signal, is less than 50 Hz. The bandwidth of the force signal is about 150 Hz. The bandwidth of the force signal after presampling filtering \(f_{\text{PF}} \) can be taken smaller.

More complex load models, requiring a longer computation time, can be simulated. A longer computation time results in a lower maximum computing frequency \(f_{\text{max}} \). The minimum computing frequency \(f_{\text{min}} \) determines the maximum model computation time allowed. Aliasing in the force signal in the frequency range above the passband of the load model is stopped, and consequently does not effect the position signal, so a sufficient criterion for avoiding aliasing errors in the computed position signal is

\[
f_c > f_{\text{BL}} + f_{\text{PB}}
\]

(2)

This yields a minimum computing frequency \(f_{\text{min}} \) of 200 Hz without, and an even lower frequency with presampling filtering of the force signal.

The time discrete calculation of the load model yields a distortion of the transfer function of the simulated time continuous model. We measured an error of 5 per cent in the modulus and 8° in the argument of the transfer function at 10 Hz for a critically damped second-order model with a resonance frequency for zero damping of 7 Hz and a calculation frequency of 200 Hz. At a calculation frequency of 350 Hz these errors were 0-6 per cent and 0°. The distortion of the transfer function is caused by the time-discrete
integration algorithm, the calculation time of the load model and the reconstruction filter. The time-discrete integration algorithm is an approximation of time-continuous integration. We used the Euler integration algorithm. Besides by using a higher calculation frequency f_c, these errors can be reduced by a more accurate integration algorithm. However, this is at the cost of more computation time. The time necessary for calculating a sample of the length signal according to the load model introduces a time delay. This results in an extra phase shift proportional to frequency in the transfer function. The time delay can be decreased by using a faster processor. Errors in analogue signal reconstruction can be reduced by a higher calculation frequency or a more accurate reconstruction filter. We used a zero-order reconstruction filter, a hold circuit.

Fig. 4 shows some experimental results of stimulating a mechanically loaded muscle. The tibialis anterior muscle of a hindlimb of a rat was stimulated supramaximally via the peroneus communis nerve at 30 Hz for 2 s. Further details on the experimental methods used can be found in VELTINK et al. (1986). Muscle force and length signals for two sets of parameters of a second-order load model (eqn. 1) are shown in Fig. 4. The resonance frequency of the load for zero damping was 9.9 Hz in Fig. 4a and 4.0 Hz in Fig. 4b. The rest length, when the muscle is not contracting, differs for both figures. The load model of Fig. 4a is damped supercritically, whereas the load of Fig. 4b is subcritically damped. As can be seen in the force signals, the load characteristics not only determine the length signal, but also influence the force signal, because of the length and velocity dependency of the muscle dynamics.

5 Conclusion

We constructed a mechanical load system for physiological experiments, for instance on contraction control of artificially stimulated muscle. The load characteristics, determined by the load algorithm and the load parameters, can be changed flexibly. The load system provides the opportunity to investigate strategies for the control of muscle contraction (e.g. muscle length control) under the conditions of an artificially stimulated muscle and a realistic mechanical load.

Acknowledgments—We would like to thank E. M. J. Wilms, B. J. Oderkerk and R. Putman for their help in making the load stimulation system and J. Put for assistance in the animal experiments.

References

ALLIN, J. and INBAR, G. F. (1986b) FNS control schemes for the upper limb. Ibid., BME-33, 818–828