Finite state control of functional electrical stimulation for the rehabilitation of gait


Sweeney, P.C. and Lyons, G.M. and Veltink, P.H. (2000) Finite state control of functional electrical stimulation for the rehabilitation of gait. Medical and biological engineering and computing, 38 (2). pp. 121-126. ISSN 0140-0118

[img] PDF
Restricted to UT campus only
: Request a copy
Abstract:Finite state control is an established technique for the implementation of intention detection and activity co-ordination levels of hierarchical control in neural prostheses, and has been used for these purposes over the last thirty years. The first finite state controllers (FSC) in the functional electrical stimulation of gait were manually crafted systems, based on observations of the events occurring during the gait cycle. Subsequent systems used machine learning to automatically learn finite state control behaviour directly from human experts. Recently, fuzzy control has been utilised as an extension of finite state control, resulting in improved state detection over standard finite state control systems in some instances. Clinical experience over the last thirty years has been positive, and has shown finite state control to be an effective and intuitive method for the control of functional electrical stimulation (FES) in neural prostheses. However, while finite state controlled neural prostheses are of interest in the research community, they are not widely used outside of this setting. This is largely due to the cumbersome nature of many neural prostheses which utilise externally mounted gait sensors and FES electrodes. FES-based control of movement has been subject to the constraints of artificial sensor and FES actuator technologies. However, continued advances in natural sensors and implanted multi-channel stimulators are broadening the boundaries of artificial control of movement, driving an evolutionary process towards increasingly human-like control of FES-based gait rehabilitation systems.
Item Type:Article
Copyright:© 2000 Springer
Electrical Engineering, Mathematics and Computer Science (EEMCS)
Research Group:
Link to this item:
Official URL:
Export this item as:BibTeX
HTML Citation
Reference Manager


Repository Staff Only: item control page

Metis ID: 111769