Single-particle thermal diffusion of charged colloids: Double-layer theory in a temperature gradient

Share/Save/Bookmark

Dhont, J.K.G. and Briels, W.J. (2008) Single-particle thermal diffusion of charged colloids: Double-layer theory in a temperature gradient. European Physical Journal E: Soft Matter and Biological Physics, 25 (1). pp. 61-76. ISSN 1292-8941

[img] PDF
Restricted to UT campus only
: Request a copy
386kB
Abstract:The double-layer contribution to the single-particle thermal diffusion coefficient of charged, spherical colloids with arbitrary double-layer thickness is calculated and compared to experiments. The calculation is based on an extension of the Debye-Hückel theory for the double-layer structure that includes a small temperature gradient. There are three forces that constitute the total thermophoretic force on a charged colloidal sphere due to the presence of its double layer: i) the force F W that results from the temperature dependence of the internal electrostatic energy W of the double layer, ii) the electric force F el with which the temperature-induced non-spherically symmetric double-layer potential acts on the surface charges of the colloidal sphere and iii) the solvent-friction force F sol on the surface of the colloidal sphere due to the solvent flow that is induced in the double layer because of its asymmetry. The force F W will be shown to reproduce predictions based on irreversible-thermodynamics considerations. The other two forces F el and F sol depend on the details of the temperature-gradient-induced asymmetry of the double-layer structure which cannot be included in an irreversible-thermodynamics treatment. Explicit expressions for the thermal diffusion coefficient are derived for arbitrary double-layer thickness, which complement the irreversible-thermodynamics result through the inclusion of the thermophoretic velocity resulting from the electric- and solvent-friction force.
Item Type:Article
Copyright:© 2008 Springer
Faculty:
Science and Technology (TNW)
Research Group:
Link to this item:http://purl.utwente.nl/publications/60840
Official URL:http://dx.doi.org/10.1140/epje/i2007-10264-6
Export this item as:BibTeX
EndNote
HTML Citation
Reference Manager

 

Repository Staff Only: item control page

Metis ID: 247769