Scaling of mesoscale simulations of polymer melts with the bare friction coefficient

Share/Save/Bookmark

Kindt, P. and Briels, W.J. (2005) Scaling of mesoscale simulations of polymer melts with the bare friction coefficient. Journal of Chemical Physics, 123 (22). p. 224903. ISSN 0021-9606

[img]PDF
Restricted to UT campus only
: Request a copy
268Kb
Abstract:Both the Rouse and reptation model predict that the dynamics of a polymer melt scale inversely proportional with the Langevin friction coefficient (E). Mesoscale Brownian dynamics simulations of polyethylene validate these scaling predictions, providing the reptational friction (E)R=(E)+(E)C is used, where (E)C reflects the fundamental difference between a deterministic and a stochastic propagator even in the limit of (E) to zero. The simulations have been performed with Langevin background friction and with pairwise friction, as in dissipative particle dynamics. Both simulation methods lead to equal scaling behavior with (E)C having almost the same value in both cases. The scaling is tested for the diffusion g(t), the shear relaxation modulus G(t), and the Rouse mode autocorrelations of melts of C120H242, C400H802, and C1000H2002. The derived dynamical scaling procedure is very useful to reduce run-time in mesoscale computer simulations, especially if pairwise friction is applied.
Item Type:Article
Copyright:© 2006 American Institute of Physics
Faculty:
Science and Technology (TNW)
Research Group:
Link to this item:http://purl.utwente.nl/publications/59931
Official URL:http://dx.doi.org/10.1063/1.2132284
Publisher URL:http://link.aip.org/link/?JCPSA6/123/224903/1
Export this item as:BibTeX
EndNote
HTML Citation
Reference Manager

 

Repository Staff Only: item control page

Metis ID: 226208