DEVELOPMENT OF AN EXPERIMENTAL 10 T Nb$_3$Sn DIPOLE MAGNET FOR THE CERN LHC

University of Twente, Applied Superconductivity Centre, POB 217, 7500 AE Enschede; (+) NIKHEF-H, Amsterdam; (&) HOLEC, Rijkerkerk; (@) SMIT WIRE, Nijmegen, all in the Netherlands; and (o) CERN, Geneva.

Abstract

An experimental 1 meter long twin aperture dipole magnet is developed using a high current density Nb$_3$Sn conductor in order to attain a magnetic field well beyond 10 T at 4.2 K. The emphasis in this Nb$_3$Sn project is on the highest possible field within the known LHC twin aperture configuration. A design target of 11.5 tesla was chosen, a value which can be achieved with the presently available Nb$_3$Sn. Though the basic properties of this experimental magnet are the same as those of the reference design, a few new solutions are implemented. The arrangement of the conductors in the magnet cross section has been optimized in a different way also leading to new dimensions of the conductors. The collaring part of the force retaining structure has been changed. The solution of a shrink fit collar has been adopted instead of a conventional collar with pin locking. Further on the two coil systems in the twin aperture magnets are assembled and collared separately instead of using a twin collar enclosing both coil systems. The paper reports on the various design aspects and the present state of development is presented.

Introduction

A new step forward in the beam energy of a collider corresponds to an increase of the collider diameter or magnetic field. This means for the proposed new Large Hadron Collider LHC at CERN, which will be implemented in the existing LEP tunnel, that dipole magnets providing a bending field in the 8 to 10 tesla range have to be developed. Thereafter it requires a massive production of 1200 tons of superconducting cables and 1860 dipole magnets in industry.

A collaboration with European laboratories and industries was set up to develop both the NbTi@2 K as the Nb$_3$Sn@4 K alternatives. The major effort is focused on NbTi because it has been decided to use NbTi technology for the dipole magnets of LHC. As a consequence the magnets have to operate at a reduced temperature of about 1.8 K in stead of the usual 4.2 K in order to have a sufficiently high current density in the NbTi.

At this moment Nb$_3$Sn is still not a reliable and efficient solution for the major part of the LHC magnet system with regard to the cost of Nb$_3$Sn windings and to the amount of experience with Nb$_3$Sn coil manufacturing present in industry. But, on the other hand, when using the commercially available NbTi conductors, it will hardly be possible to attain a reliable 10 T operation of all the 1860 dipole magnets connected in series since the critical current density of industrially made multifilamentary NbTi conductors with 5 µm filament size is still not sufficient for that.

However, when Nb$_3$Sn technology is applied, a field level of 10 T or even 11 or 12 tesla could be achieved within the bounds set by the basic LHC dipole geometry. The realization of this is the main task of the magnet development project of which we report here. It concerns the alternative route of using a Nb$_3$Sn superconductor at 4.2 K and the project includes a renewed design for 11.5 tesla and the practical realization of an experimental dipole magnet. The R&D program was started in 1988, in the framework of a cooperation agreement with CERN, by the Applied Superconductivity Centre of the University of Twente and NIKHEF in collaboration with ECN, HOLEC and SMIT WIRE. In this project the efforts are focused on the highest possible field within the restrictions of the basic LHC magnet design using the Nb$_3$Sn conductor with the highest current density.

LHC dipole magnets

The installation of the LHC magnet system in the existing LEP tunnel is an economic solution. On the other hand, due to the insufficient space for two separate rings, it is necessary to mount both beam tubes into a single yoke and force retaining structure. In Figure 1 a schematic view of this so-called twin aperture magnet is shown. The magnet has a 2-shell coil system with graded current density, surrounded by a single force-retaining structure. This consists of laminated clamping collars, a vertically split and laminated cold iron yoke and an outer shrinking cylinder that handles the major part of the forces. The main parameters of the coil system are given in Table 1.

The joint action of coil clamping collars, iron yoke and the outer cylinder in the "mechanically hybrid" support structure provides sufficient rigidity and controlled dimensions to guarantee the field quality during the entire operation cycle. About 30 % of the dominant force F_s in the horizontal plane of 4.6 MN (460 tons) per meter at 10 T is taken by the collars and the major part of about 70 % is taken by the outer cylinder. More general information on the magnet technology for LHC can be found in references.

Fig. 1. Schematic view of the cross and longitudinal sections of a 1 meter long 10 T twin aperture LHC dipole magnet showing the main parts: (1) coils, (2) collars, (3) cold iron yoke, (4) outer shrinking cylinder enclosing the cold magnet parts, (5) coil head sections, (6) end-flange, end-plates.
Authorized licensed use limited to: UNIVERSITEIT TWENTE. Downloaded on October 14, 2008 at 03:12 from IEEE Xplore. Restrictions apply.
laboratory scale. Two prototype LHC cables made of the ECN material were tested recently. A cross section of one of these is shown in figure 3. This cable for an outer coil has a critical current of 30 kA at 10 T which is about 90% beyond the nominal operating current. This goes far to prove the excellent performance of this type of conductor with respect to the critical current density.

The 11.5 T design

A target field of 11.5 T using the best Nb3Sn conductor was the dominant aspect of the design process for a new conductor arrangement and collaring system. The basic structure around the collars which consists of a vertically split yoke and the outer shrinking cylinder is unchanged. The arrangement of the conductors in a single line interface between the coils and the insert. The select laid-out as shown in figure 4 is based on an J(B) relation of a Nb3Sn conductor was included; the top angle of the first layer which should be as small as possible in order to have the maximum bending radius at the coil head; and the thickness of the cable in the first layer which automatically means a maximum possible number of strands in the outer layer cable. Note that the number of conductors in both layers is the same as in the reference design. On top of the second layer an additional copper spacer is present to obtain a single line interface between the coils and the insert.

Conductor arrangement. A new geometrical arrangement of the conductors in a 2 layer coe type of current distribution was generated by an optimization procedure as described elsewhere. The selected laid-out as shown in figure 4 is based on an J(B) relation of a Nb3Sn conductor was included; the top angle of the first layer which should be as small as possible in order to have the maximum bending radius at the coil head; and the thickness of the cable in the first layer which automatically means a maximum possible number of strands in the outer layer cable. Note that the number of conductors in both layers is the same as in the reference design. On top of the second layer an additional copper spacer is present to obtain a single line interface between the coils and the insert.

Table 3. Main parameters of the 11.5 T magnet design.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Target field</td>
<td>11.5 T</td>
</tr>
<tr>
<td>Max. field in layer 1</td>
<td>11.9 T</td>
</tr>
<tr>
<td>Max. field in layer 2</td>
<td>9.6 T</td>
</tr>
<tr>
<td>Coi inner diameter</td>
<td>50 mm</td>
</tr>
<tr>
<td>Coi outer diameter</td>
<td>130 mm</td>
</tr>
<tr>
<td>Operating current (11.5 T)</td>
<td>17.7 kA</td>
</tr>
<tr>
<td>Operating current (10 T)</td>
<td>15.4 kA</td>
</tr>
<tr>
<td>Max. Lorentz forces:</td>
<td></td>
</tr>
<tr>
<td>In x-direction</td>
<td>6.50 MN/m</td>
</tr>
<tr>
<td>In y-direction</td>
<td>-1.6 MN/m</td>
</tr>
<tr>
<td>On coil head</td>
<td>0.9 MN</td>
</tr>
</tbody>
</table>

Superconducting cable. The properties of the superconducting cables for both layers which belongs to the optimum arrangement are listed in table 4 in which also a comparison is made with the 10 T design. The widths of both cables is not the same and the total built up in the radial direction has increased with 5 mm.

As part of the conductor development the effect of transverse forces on keystoned Rutherford Nb3Sn cables is studied. The maximum stress transversely on the cable amounts to about 140 MPa in the medium plane of the first layer. From measurements on bare conductors we can expect a degradation of about 10 to 20% at this stress level. To what extent these results are valid for insulated and fully impregnated cables is still uncertain. The first results give indication of a similar degree of degradation but more measurements to verify this have to be carried out.

The ECN and the TWCA conductors, see table 2, are at present the only candidates for the 11.5 T magnet. In fig. 5 the Jc(B) curves of both types of conductors are shown in relation to the load lines of both coil layers. The margins at 11.5 T of these conductors are 60%, 15% and 10% respectively. Taking into account a 30% Jc reduction due to cabling and transverse compression of about 140 MPa, then still a margin of 10% is present when using the ECN conductor. At this moment both conductors are in production.

Coil clamping structure. The joint action of collars, yoke and outer cylinder has to take care of the Lorentz forces in such a way that the coil deformation is very small to reduce field errors and the coils have to remain under

Fig. 4. The optimized conductor and spacer distribution providing 11.5 T with a Jc of 1500 A/mm² at 10 T.

Fig. 5. Critical current density of the ECN, ECN-30% and 2 TWCA conductors, (+) 2000, (+) 1400, (+) 1500 and (9) 1500 A/mm² at 10 T resp., in relation to the load lines of the inner and outer layers.
compression in order to prevent premature quenches. The forces in the 11.5 T magnet were calculated using the 3-D FEM program TOSCA. The main components are listed in table 3. The local forces in the windings are input for extensive ANSYS calculations to determine the details of construction.

In this magnet we will apply a shrinking collaring system which consists of rings of aluminum of 3 mm thickness stacked into a 1 m long cylinder. Further on, each of both coils in the twin aperture magnet will have its own collaring structure after which both come together in the common yoke.

This allows us to exchange coils and it simplifies the collaring procedure. Sufficient pre-stress is obtained by a proper choice of the material of the insert which is in contact with the coil surface, and the precise dimensions of the inner diameter of the collar rings as well as the sizes of the insert. A short 10 cm model of a collared coil is now under construction, see figure 6. With this we can check the ANSYS results and it enables the investigation of several inserted inserts made of stainless steel or Molybdenum. In the short model pressure transducers are present to measure the actual pre-stress after collaring and cooling down. The stress level in the medium plane in the windings can go up to about 140 MPa at 11.5 T by which at the top angle still a net compression of 10-50 MPa remains.

Conclusions

An 11.5 T (10 T nominal) Nb3Sn dipole magnet is being designed and constructed. The application of ECN type of Nb3Sn wire could lead to the highest possible field in LHC type of dipole magnets due to its superior current density in comparison to other Nb3Sn materials. Both the ECN and TWCA type of conductors will be investigated. The necessary preliminary work is almost completed, coil winding is scheduled for march 1991 and a first test of the magnet could occur in december 1991.

References