Chemistry of 2,2,6,6,-Tetramethyl-3,5-heptanedione (Hthd) Modification of Zirconium and Hafnium Propoxide Precursors

Share/Save/Bookmark

Spijksma, Gerald I. and Bouwmeester, Henny J.M. and Blank, Dave H.A. and Fischer, Andreas and Henry, Marc and Kessler, Vadim G. (2006) Chemistry of 2,2,6,6,-Tetramethyl-3,5-heptanedione (Hthd) Modification of Zirconium and Hafnium Propoxide Precursors. Inorganic Chemistry, 45 (13). pp. 4938-4950. ISSN 0020-1669

[img]PDF
Restricted to UT campus only
: Request a copy
456Kb
Abstract:The modification of different zirconium propoxide and hafnium propoxide precursors with 2,2,6,6,-tetramethyl-3,5-heptanedione (Hthd) was investigated by characterization of the isolated modified species. The complexes [Zr(OnPr)3(thd)]2, [Zr(OnPr)(OiPr)2(thd)]2, Zr(OiPr)(thd)3, [Hf(OnPr)3(thd)]2, and Hf(OiPr)(thd)3 were isolated and characterized. The structure of the n-propoxide analogue of Zr(OiPr)(thd)3 could not be refined, but its existence was clearly demonstrated by XRD and 1H NMR. The modification of the propoxide precursors involves mono- and trisubstituted intermediate compounds and does not involve a disubstituted compound; thus, the commercial product that is claimed to be “Zr(OiPr)2(thd)2” and is most commonly used for the MOCVD preparation of ZrO2 does not exist. No evidence was found for the presence of such a compound in either zirconium- or hafnium-based systems. Formation of the dimeric hydroxo-di-thd-substituted complex, [Hf(OH)(OiPr)(thd)2]2, which could be isolated only for hafnium-based systems, occurs on microhydrolysis. All heteroleptic intermediates are eventually transformed to the thermodynamically stable Zr(thd)4 or Hf(thd)4. The compounds obtained from isopropoxide precursors showed a higher stability than those with n-propoxide ligands or a combination of both types. In addition, it is important to note that residual alcohol facilitates the transformation and strongly enhances its rate. The unusually low solubility and volatility of MIV(thd)4 has been shown to be due to close packing and strong van der Waals interactions in the crystal structures of these compounds.
Item Type:Article
Copyright:© 2006 American Chemical Society
Faculty:
Science and Technology (TNW)
Research Group:
Link to this item:http://purl.utwente.nl/publications/59196
Official URL:http://dx.doi.org/10.1021/ic051674j
Export this item as:BibTeX
EndNote
HTML Citation
Reference Manager

 

Repository Staff Only: item control page

Metis ID: 235014