Electron-density-based calculations of intermolecular energy: case of urea

Share/Save/Bookmark

Suponitsky, Kyrill Yu. and Tsirelson, Vladimir G. and Feil, Dirk (1999) Electron-density-based calculations of intermolecular energy: case of urea. Acta crystallographica Section A: Foundations of crystallography, 55 . pp. 821-827. ISSN 01087673

[img]PDF
Restricted to UT campus only
: Request a copy
104Kb
Abstract:The intermolecular interaction energy in crystalline urea has been calculated both from diffraction data and from the Hartree-Fock crystalline electron-density distribution, using a modified atom-atom approximation scheme. The electrostatic part of this energy has been calculated from the atomic multipole moments, obtained by adjustment of the multipole model to experimental X-ray and to theoretical Hartree-Fock structure amplitudes. To obtain the induction energy, multipole moments were calculated from structure amplitudes for the crystalline electron density and from those that refer to the electron density of a superposition of isolated molecules. This worked well for the calculation of the interaction energy from Hartree-Fock data (6% difference from the sublimation-energy value), but not for the interaction energy from experimental data, where the moments of the superposition have to come from Hartree-Fock calculations: the two sets of multipole moments are far too different. The uncertainty of the phases of the structure amplitudes, combined with systematic errors in the theoretical data and noise in the experimental values, may account for the discrepancies. The nature of the different contributions to intermolecular interactions for urea is examined.
Item Type:Article
Copyright:© 1999 The International Union of Crystallography
Link to this item:http://purl.utwente.nl/publications/59191
Official URL:http://dx.doi.org/10.1107/S0108767399001993
Export this item as:BibTeX
EndNote
HTML Citation
Reference Manager

 

Repository Staff Only: item control page