The Remaining Service Time upon Reaching a High Level in M/G/1 Queues

Share/Save/Bookmark

Boer, Pieter-Tjerk de and Nicola, Victor F. and Ommeren, Jan-Kees C.W. van (2001) The Remaining Service Time upon Reaching a High Level in M/G/1 Queues. Queueing Systems, 39 (1). pp. 55-78. ISSN 0257-0130

[img] PDF
Restricted to UT campus only
: Request a copy
173kB
Abstract:The distribution of the remaining service time upon reaching some target level in an M/G/1 queue is of theoretical as well as practical interest. In general, this distribution depends on the initial level as well as on the target level, say, B. Two initial levels are of particular interest, namely, level 1 (i.e., upon arrival to an empty system) and level B–1 (i.e., upon departure at the target level).
In this paper, we consider a busy cycle and show that the remaining service time distribution, upon reaching a high level B due to an arrival, converges to a limiting distribution for B. We determine this asymptotic distribution upon the first hit (i.e., starting with an arrival to an empty system) and upon subsequent hits (i.e., starting with a departure at the target) into a high target level B. The form of the limiting (asymptotic) distribution of the remaining service time depends on whether the system is stable or not. The asymptotic analysis in this paper also enables us to obtain good analytical approximations of interesting quantities associated with rare events, such as overflow probabilities.
Item Type:Article
Copyright:© 2001 Springer
Faculty:
Electrical Engineering, Mathematics and Computer Science (EEMCS)
Research Group:
Link to this item:http://purl.utwente.nl/publications/58986
Official URL:http://dx.doi.org/10.1023/A:1017935616446
Export this item as:BibTeX
EndNote
HTML Citation
Reference Manager

 

Repository Staff Only: item control page

Metis ID: 202677