Integrated Lithographic Molding for Microneedle-Based Devices


Lüttge, Regina and Berenschot, Erwin J.W. and Boer, Meint J. de and Altpeter, Dominique M. and Vrouwe, Elwin X. and Berg, Albert van den and Elwenspoek, Miko (2007) Integrated Lithographic Molding for Microneedle-Based Devices. Journal of microelectromechanical systems, 16 (4). pp. 872-884. ISSN 1057-7157

open access
Abstract:This paper presents a new fabrication method consisting of lithographically defining multiple layers of high aspect-ratio photoresist onto preprocessed silicon substrates and release of the polymer by the lost mold or sacrificial layer technique, coined by us as lithographic molding. The process methodology was demonstrated fabricating out-of-plane polymeric hollow microneedles. First, the fabrication of needle tips was demonstrated for polymeric microneedles with an outer diameter of 250 mum, through-hole capillaries of 75-mum diameter and a needle shaft length of 430 mum by lithographic processing of SU-8 onto simple v-grooves. Second, the technique was extended to gain more freedom in tip shape design, needle shaft length and use of filling materials. A novel combination of silicon dry and wet etching is introduced that allows highly accurate and repetitive lithographic molding of a complex shape. Both techniques consent to the lithographic integration of microfluidic back plates forming a patch-type device. These microneedle-integrated patches offer a feasible solution for medical applications that demand an easy to use point-of-care sample collector, for example, in blood diagnostics for lithium therapy. Although microchip capillary electrophoresis glass devices were addressed earlier, here, we show for the first time the complete diagnostic method based on microneedles made from SU-8.
Item Type:Article
Copyright:© 2007 IEEE
Science and Technology (TNW)
Electrical Engineering, Mathematics and Computer Science (EEMCS)
Research Group:
Link to this item:
Official URL:
Export this item as:BibTeX
HTML Citation
Reference Manager


Repository Staff Only: item control page

Metis ID: 241628