Textural stability of titania–alumina composite membranes


Kumar, Krishnankutty-Nair P. and Keizer, Klaas and Burggraaf, Anthonie J. (1993) Textural stability of titania–alumina composite membranes. Journal of materials chemistry, 3 (9). pp. 917-922. ISSN 0959-9428

open access
Abstract:Textural evolution (porosity reduction, pore and crystallite growth) in titania–alumina composite membranes has been studied using thermal analysis, X-ray diffraction, field emission scanning electron microscopy and N2 physisorption techniques. The presence of alumina in the membranes improved the thermal stability of the porous texture by retarding the anatase-to-rutile phase transformation and grain growth of the anatase phase. Pure unsupported titania membranes lose their porosity completely after calcination at 600 °C for 8 h, whereas the titania–50 wt.% alumina composite membranes retained a porosity of ca. 40% even after calcination for 30 h at 800 °C. The anatase-to-rutile phase transformation temperatures for pure unsupported titania and the titania phase of the unsupported titania–alumina composite membranes (50 wt.% alumina) were found to be 580 and 960 °C, respectively, as observed from the DSC data.From XRD results it was found that pure unsupported titania and the unsupported titania–alumina (50 wt.% alumina) composite membranes transformed to more than 95% of rutile after heat treatment for 8 h at 600 and 900 °C, respectively. The anatase to rutile phase transformation kinetics were studied using DSC data and applying a non-isothermal form of the Avrami equation.

Item Type:Article
Copyright:© 1993 Royal Society of Chemistry
Science and Technology (TNW)
Research Group:
Link to this item:http://purl.utwente.nl/publications/58237
Official URL:https://doi.org/10.1039/JM9930300917
Export this item as:BibTeX
HTML Citation
Reference Manager


Repository Staff Only: item control page

Metis ID: 106849