Extreme wave phenomena in down-stream running modulated waves


Andonowati and Karjanto, N. and Groesen, E. van (2006) Extreme wave phenomena in down-stream running modulated waves. Applied Mathematical Modelling, 31 (7). pp. 1425-1443. ISSN 0307-904X

[img] PDF
Restricted to UT campus only
: Request a copy
Abstract:Modulational, Benjamin-Feir, instability is studied for the down-stream evolution of surface gravity waves. An explicit solution, the soliton on finite background, of the NLS equation in physical space is used to study various phenomena in detail. It is shown that for sufficiently long modulation lengths, at a unique position where the largest waves appear, phase singularities are present in the time signal. These singularities are related to wave dislocations and lead to a discrimination between successive `extreme¿ waves and much smaller intermittent waves. Energy flow in opposite directions through successive dislocations at which waves merge and split, causes the large amplitude difference. The envelope of the time signal at that point is shown to have a simple phase plane representation, and will be described by a symmetry breaking unfolding of the steady state solutions of NLS. The results are used together with the maximal temporal amplitude MTA, to design a strategy for the generation of extreme (freak, rogue) waves in hydrodynamic laboratories.
Item Type:Article
Copyright:© 2006 Elsevier
Electrical Engineering, Mathematics and Computer Science (EEMCS)
Research Group:
Link to this item:http://purl.utwente.nl/publications/57744
Official URL:https://doi.org/10.1016/j.apm.2006.04.015
Export this item as:BibTeX
HTML Citation
Reference Manager


Repository Staff Only: item control page