Modeling of quasi-guiding light within the lower refractive index core layer(s)

Share/Save/Bookmark

Uranus, H.P. and Hoekstra, H.J.W.M. and Groesen van, E. (2005) Modeling of quasi-guiding light within the lower refractive index core layer(s). Journal of the Indonesian Mathematical Society, 11 (2). pp. 101-119. ISSN 0854-1388

[img]PDF
Restricted to UT campus only
: Request a copy
568Kb
Abstract:It is well known that light can be guided within layer(s) having refractive index higher than that of the surroundings by means of the total internal reflection principles. However, using a proper structure, light can also be quasi-confined into layer(s) with refractive indices lower than the surroundings. In this case the light is quasi-guided. In this work, we will show that using proper mathematical tools, we can model the latter case of confining light. We used the Galerkin finite element method with Sommerfeld-like boundary conditions to conduct numerical investigations on this class of structures. We investigate numerically the properties of the anti-resonant reflecting optical waveguides (ARROW), leaky step- and graded-index waveguides, planar Bragg and hollow waveguides. Through the modal solutions (i.e. the complex-valued mode indices and modal field profiles), we present an intuitive interpretation of the unique properties of such structures, e.g. the anti-crossing between core and cladding resonance modes in ARROW, the growing-up of field in the high-index substrate/cladding of leaky waveguides, and the relation between Bragg and hollow waveguides.
Item Type:Article
Faculty:
Electrical Engineering, Mathematics and Computer Science (EEMCS)
Research Group:
Link to this item:http://purl.utwente.nl/publications/54181
Export this item as:BibTeX
EndNote
HTML Citation
Reference Manager

 

Repository Staff Only: item control page

Metis ID: 227924