Photocontrolled release and uptake of a porphyrin guest by dithienylethene-tethered beta-cyclodextrin host dimers

Share/Save/Bookmark

Mulder, Alart and Jukovic, Amela and Leeuwen, Fijs W.B. van and Kooijman, Huub and Spek, Anthony L. and Huskens, Jurriaan and Reinhoudt, David N. (2004) Photocontrolled release and uptake of a porphyrin guest by dithienylethene-tethered beta-cyclodextrin host dimers. Chemistry: a European Journal, 10 (5). pp. 1114-1123. ISSN 0947-6539

[img] PDF
Restricted to UT campus only
: Request a copy
252kB
Abstract:Two photoswitchable dithienylethene-tethered ß-cyclodextrin dimers were synthesized to function as host molecules with an externally controllable binding affinity. The cyclodextrin cavities of these dimers are linked through their secondary sides by a photochromic dithienylethene unit that is connected to the secondary rim either directly (4) or through propyl spacers (9). Irradiation with light switches these dimers between a relatively flexible (open) and a rigid (closed) form. The binding properties of the dimers depend on the configuration of the dithienylethene spacer, as is shown by microcalorimetry performed with tetrakis-sulfonatophenyl porphyrin (TSPP) as a guest molecule. The differences in binding properties are most pronounced for the more rigid dimer 4, which binds TSPP 35 times more strongly in the open form (4 a) than in the closed form (4 b). The values found for the enthalpy of binding (ΔH°) indicate that this difference in binding is due to the loss of cooperativity between the two ß-cyclodextrin cavities in the closed form. Molecular modeling shows that 4 b is not able to bind TSPP effectively in both cyclodextrin cavities. The open and closed forms of the more flexible dimer 9 show no substantial difference in their binding of TSPP. Thermodynamic values indicative of strong binding of TSPP by two ß-cyclodextrin cavities were measured for both forms of the dimer, and molecular modeling confirms that both are flexible enough to tightly bind TSPP. The binding differences between the forms of dimer 4 allow the photocontrolled release and uptake of TSPP, which renders control of the ratio of complexed to free TSPP in solution possible.
Item Type:Article
Copyright:© 2004 Wiley
Faculty:
Science and Technology (TNW)
Research Group:
Link to this item:http://purl.utwente.nl/publications/49522
Official URL:http://dx.doi.org/10.1002/chem.200305567
Export this item as:BibTeX
EndNote
HTML Citation
Reference Manager

 

Repository Staff Only: item control page

Metis ID: 222092