Real-time light-driven dynamics of the fluorescence emission in individual green fluorescent proteins

Share/Save/Bookmark

Garcia-Parajo, M.F. and Segers-Nolten, G.M.J. and Veerman, J.A. and Greve, J. and Hulst van, N.F. (2000) Real-time light-driven dynamics of the fluorescence emission in individual green fluorescent proteins. Proceedings of the National Academy of Sciences of the United States of America, PNAS, 97 (13). pp. 7237-7242. ISSN 0027-8424

[img]PDF
433Kb
Abstract:Real-time single-molecule fluorescence detection using confocal and near-field scanning optical microscopy has been applied to elucidate the nature of the “on–off” blinking observed in the Ser-65 → Thr (S65T) mutant of the green fluorescent protein (GFP). Fluorescence time traces as a function of the excitation intensity, with a time resolution of 100 μs and observation times up to 65 s, reveal the existence of a nonemissive state responsible for the long dark intervals in the GFP. We find that excitation intensity has a dramatic effect on the blinking. Whereas the time during which the fluorescence is on becomes shorter as the intensity is increased, the off-times are independent of excitation intensity. Statistical analysis of the on- and off-times renders a characteristic off-time of 1.6 ± 0.2 s and allows us to calculate a transition yield of ≈0.5 × 10−5 from the emissive to the nonemissive state. The saturation excitation intensity at which on- and off-times are equal is ≈1.5 kW/cm2. On the basis of the single-molecule data we calculate an absorption cross section of 6.5 × 10−17 cm2 for the S65T mutant. These results have important implications for the use of the GFP to follow dynamic processes in time at the single-molecular level.
Item Type:Article
Copyright:© 2000 National Academy of Sciences of the United States of America
Faculty:
Science and Technology (TNW)
Research Group:
Link to this item:http://purl.utwente.nl/publications/48281
Official URL:http://www.pnas.org/content/97/13/7237.abstract
Export this item as:BibTeX
EndNote
HTML Citation
Reference Manager

 

Repository Staff Only: item control page

Metis ID: 128639