Near-field scanning optical microscopy in liquid for high resolution single molecule detection on dendritic cells

Share/Save/Bookmark

Koopman, M. and Cambi, A. and Bakker, B.I. de and Joosten, B. and Figdor, C.G. and Hulst, N.F. van and Garcia-Parajo, M.F. (2004) Near-field scanning optical microscopy in liquid for high resolution single molecule detection on dendritic cells. FEBS letters, 573 (1-3). pp. 6-10. ISSN 0014-5793

[img] PDF
Restricted to UT campus only
: Request a copy
301kB
Abstract:Clustering of cell surface receptors into micro-domains in the plasma membrane is an important mechanism for regulating cellular functions. Unfortunately, these domains are often too small to be resolved with conventional optical microscopy. Near-field scanning optical microscopy (NSOM) is a relatively new technique that combines ultra high optical resolution, down to 70 nm, with single molecule detection sensitivity. As such, the technique holds great potential for direct visualisation of domains at the cell surface. Yet, NSOM operation under liquid conditions is far from trivial. In this contribution, we show that the performance of NSOM can be extended to measurements in liquid environments using a diving bell concept. For the first time, individual fluorescent molecules on the membrane of cells in solution are imaged with a spatial resolution of 90 nm. Furthermore, using this technique we have been able to directly visualise nanometric sized domains of the C-type lectin DC-SIGN on the membrane of dendritic cells, both in air and in liquid.
Item Type:Article
Copyright:© 2004 Elsevier
Research Group:
Link to this item:http://purl.utwente.nl/publications/47527
Official URL:http://dx.doi.org/10.1016/j.febslet.2004.07.035
Export this item as:BibTeX
EndNote
HTML Citation
Reference Manager

 

Repository Staff Only: item control page

Metis ID: 218081