On designing a framework for
distributed real-time embedded control systems
Bojan Orlic and Jan F. Broenink

Twente Embedded Systems Initiative, Drebbel Institute for Mechatronics,
Control Engineering, Faculty of EE-Math-CS
University of Twente,
P.O.Box 217, NL-7500 AE Enschede, the Netherlands
Phone: +31 53 489 2817 Fax: +31 53 489 2223
E-mail: B.Orlic@utwente.nl, J.F.Broenink@utwente.nl

Introduction

Closed loop control systems are in essence parallel and
distributed. But when implementing this parallelism in
software, lot of obstacles concerning multithreading com-
munication and synchronization issues arise. Using
multithreading in safe and structured way is possible if
the program is built such that it can be checked using
some formal mathematical algebra (e.g. CSP). Fortu-
nately, several formal checking tools and libraries imple-
menting CSP based constructs are available for most
widely used general purpose programming languages.
One of those libraries is the CT library [1, 2], developed
at University of Twente.

2 Approach

CT library was designed with hard real-time embedded
systems in mind, and thus it is suitable for implementa-
tion of control software of mechatronics systems. This
project is about developing communication extension to
the CT library to make it applicable in distributed systems
connected over fieldbuses [3]. The CAN fieldbus is cho-
sen as first fieldbus because of its deterministic, reliable
communications with short prioritized messages and in-
tensive error detection. Besides, its application field has
already shifted from automotive networks towards indus-
trial applications.

Many control systems are required to provide a high de-
gree of safety. If such control system temporarily fails for
only a brief moment, consequences can be serious. There-
fore, the aim is to insure correct work of those systems
despite faults. In scope of using the CT library for safety
critical systems, a solution is to incorporate a special
fault-tolerance protocol layer in this library. The achieved
architecture will be tested by artificially producing alarm
showers and failures (e.g. node failure, network partition,
corrupted, lost messages…).

Apart from achieving reliable multithreading based on
CSP and fault tolerance in distributed environment, there
are several other orthogonal directions being under inves-
tigation in this project: improving real-time bus and
processor scheduling, satisfying control-system specific
requirements, achieving scalability in distributed envi-
ronment and achieving flexibility in a level that will not
cause conflicting to much with other requirements.

References

[1] G. H. Hilderink, J. F. Broenink, and A. W. P. Bak-
kers, “Communicating threads for Java,” presented at
Proc. 22nd World Occam and Transputer User Group
enink, “A Distributed Real-Time Java System Based
on CSP,” presented at The third IEEE International
Symposium on Object-Oriented Real-Time Distrib-
uted Computing ISORC 2000, Newport Beach, CA,
2000.
[3] B. Orlic and J. F. Broenink, “CSP channels for CAN-
bus connected embedded control systems,” presented