A finite element scheme to study the nonlinear optical response of a finite grating without and with defect


Suryanto, A. and Groesen, E. van and Hammer, M. and Hoekstra, H.J.W.M. (2003) A finite element scheme to study the nonlinear optical response of a finite grating without and with defect. Optical and quantum electronics, 35 (4-5). pp. 313-332. ISSN 0306-8919

[img] PDF
Restricted to UT campus only
: Request a copy
Abstract:We present a simple numerical scheme based on the finite element method (FEM) using transparent-influx boundary conditions to study the nonlinear optical response of a finite one-dimensional grating with Kerr medium. Restricting first to the linear case, we improve the standard FEM to get a fourth order accurate scheme maintaining a symmetric-tridiagonal structure of the finite element matrix. For the full nonlinear equation, we implement the improved FEM for the linear part and a standard FEM for the nonlinear part. The resulting nonlinear system of equations is solved using a weighted-averaged fixed-point iterative method combined with a continuation method. To illustrate the method, we study a periodic structure without and with defect and show that the method has no problem with large nonlinear effect. The method is also found to be able to show the optical bistability behavior of the ideal and the defect structure as a function of either the frequency or the intensity of the input light. The bistability of the ideal periodic structure can be obtained by tuning the frequency to a value close to the bottom or top linear band-edge while that of the defect structure can be produced using a frequency near the defect mode or near the bottom of the linear band-edge. The threshold value can be reduced by increasing the number of layer periods. We found that the threshold needed for the defect structure is much lower then that for a strictly periodic structure of the same length.
Item Type:Article
Copyright:© 2003 Springer
Electrical Engineering, Mathematics and Computer Science (EEMCS)
Research Group:
Link to this item:http://purl.utwente.nl/publications/45228
Official URL:https://doi.org/10.1023/A:1022901201632
Export this item as:BibTeX
HTML Citation
Reference Manager


Repository Staff Only: item control page

Metis ID: 211687