Two-dimensional stochastic modeling of membrane fouling

Share/Save/Bookmark

Wessling, M. (2001) Two-dimensional stochastic modeling of membrane fouling. Separation and Purification Technology, 24 (3). pp. 375-387. ISSN 1383-5866

[img] PDF
Restricted to UT campus only
: Request a copy
461kB
Abstract:The phenomenon of fouling of microfiltration membranes by much smaller particles such as proteins is described by a new developed simulation algorithm based on diffusion limited aggregation simulation techniques. The model specifies the membrane morphology explicitly and allows to (a) characterize the deposit morphology and (b) quantify the flux decline and the retention increase as a function of membrane morphology. Simulations suggest that the aggregate density above the pore opening is smaller than the aggregate density above the flat adsorption surface. The flux decline as a function of number of particles deposited shows two distinct regimes. Initially the flux decline is determined by internal fouling and membranes with the same initial flux but different pore diameter show different flux decline: the membrane with the smaller pore has a more rapid flux decline. Also, the effect of membrane thickness on flux decline and retention can be distinguished. The current model is compared with macroscopic models such as the pore blocking model, cake filtration model and the internal filtration model. Finally, the paper discusses the current limitations of the algorithm and points out opportunities for model improvement to further approach experimental reality.
Item Type:Article
Copyright:© 2001 Elsevier Science B.V.
Faculty:
Science and Technology (TNW)
Research Group:
Link to this item:http://purl.utwente.nl/publications/36585
Official URL:http://dx.doi.org/10.1016/S1383-5866(01)00138-1
Export this item as:BibTeX
EndNote
HTML Citation
Reference Manager

 

Repository Staff Only: item control page

Metis ID: 202449