Transport properties of multifilamentary Ag-sheated Bi-2223 tapes under the influence of strain

Share/Save/Bookmark

Kiss, Takanobu and Eck, Hans van and Haken, Bennie ten and Kate, Herman H.J. ten (2001) Transport properties of multifilamentary Ag-sheated Bi-2223 tapes under the influence of strain. IEEE Transactions on Applied Superconductivity, 11 (1). pp. 3888-3891. ISSN 1051-8223

open access
[img]
Preview
PDF
419kB
Abstract:Current-voltage (I-V) characteristics in multifilamentary Ag/Bi2223 tapes are investigated as a function of mechanical strain. As is well known, the critical current, Ic, in axially elongated tape remains almost constant up to a strain around 0.5%, then is followed by a sharp reduction. However, for larger elongations, a long tail in the Ic-strain curve is observed, i.e., around 20% of the initial Ic still remains even at 0.8% strain. The irreversible Ic reduction indicates that the degradation comes from the breakdown of superconducting filaments. However, it is observed that the rupture risk probability reduces as the strain is increased in the long tail. This anomaly suggests that the measured strain of the whole tape is not identical to that of the HTS filaments inside the tape. We propose a model to describe the mechanical properties of the tape. It is shown that (1) the breakdown probability of the filaments is well described by the Weibull function if we calculate the influence of shearing between the superconducting filaments and the surrounding Ag sheath, (2) the Ic-strain properties can be described accurately by the model, (3) transport I-V characteristics can also be described simultaneously as a function of strain
Item Type:Article
Copyright:©2001 IEEE
Faculty:
Science and Technology (TNW)
Research Group:
Link to this item:http://purl.utwente.nl/publications/36169
Official URL:http://dx.doi.org/10.1109/77.919917
Export this item as:BibTeX
EndNote
HTML Citation
Reference Manager

 

Repository Staff Only: item control page

Metis ID: 201149