Pancyclicity of Hamiltonian line graphs


Blanken, E. van and Heuvel, J. van den and Veldman, H.J. (1995) Pancyclicity of Hamiltonian line graphs. Discrete Mathematics, 138 (1-3). pp. 379-385. ISSN 0012-365X

open access
Abstract:Let f(n) be the smallest integer such that for every graph G of order n with minimum degree 3(G)>f(n), the line graph L(G) of G is pancyclic whenever L(G) is hamiltonian. Results are proved showing that f(n) = ®(n 1/3).
Item Type:Article
Copyright:© 1995 Elsevier Science
Link to this item:
Official URL:
Export this item as:BibTeX
HTML Citation
Reference Manager


Repository Staff Only: item control page

Metis ID: 140717