A generalized view of foam drainage: experiment and theory


Koehler, Stephan A. and Hilgenfeldt, Sascha and Stone, Howard A. (2000) A generalized view of foam drainage: experiment and theory. Langmuir, 16 (15). p. 6327. ISSN 0743-7463

[img] PDF
Restricted to UT campus only
: Request a copy
Abstract:A new experimental method is presented using fluorescein dye to determine the spatial and temporal variations of the liquid volume fraction in aqueous foams. This method is used for quantitative studies of liquid redistribution (drainage) in three types of experiments: forced, free, and pulsed drainage. Characteristic quantities, such as the drainage velocity, show power-law dependences on experimental parameters that are inconsistent with traditional foam drainage models based on Poiseuille-type flow in the liquid-carrying channels (Plateau borders) of the foam. To obtain a theoretical description, the foam drainage equation is generalized using an energy argument which accounts for viscous dissipation in both the channels and the nodes (or vertices, which are the junctions of four channels) of the liquid network. Good agreement with results for all three types of drainage experiments is found when using this new model in the limit where the dissipation is dominated by the nodes.
Item Type:Article
Copyright:© 2000 American Chemical Society
Science and Technology (TNW)
Link to this item:http://purl.utwente.nl/publications/24771
Official URL:https://doi.org/10.1021/la9913147
Export this item as:BibTeX
HTML Citation
Reference Manager


Repository Staff Only: item control page

Metis ID: 129572