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Abstract

This paper presents a process algebra for specifying soft
real-time constraints in a compositional way. For these soft
constraints we take a stochastic point of view and allow ar-
bitrary probability distributions to express delays of activi-
ties. The semantics of this process algebra is given in terms
of stochastic automata, a variant of timed automata where
clocks are initialised randomly and run backwards. To
analyse quantitative properties, an algorithm is presented
for the on-the-fly generation of a discrete-event simulation
model from a process algebra specification. On the quali-
tative side, a symbolic technique for classical reachability
analysis of stochastic automata is presented. As a result
a unifying framework for the specification and analysis of
quantitative and qualitative properties is obtained. We dis-
cuss an implementation of both analytic methods and spec-
ify and analyse a fault-tolerant multi-processor system.

1. Introduction

The design and analysis of various types of systems, like
embedded systems or communication protocols, require in-
sight in not only the functional, but also in the real-time and
performance aspects of applications involved. Research in
formal methods has recognised the need for the additional
support of quantitative aspects, and various initiatives have
been taken to accomplish such support. A prominent ex-
ample is the treatment of real-time constraints, where spec-
ification formalisms like timed automata [2] have emerged,
and impressive progress has been made in the development
of efficient verification algorithms [21, 5]. This has resulted
in a number of tools (model checkers) that provide interest-
ing experimental platforms.

The real-time constraint that one considers in this set-
ting is typically ‘hard’, for instance, “the system must al-
ways do a certain activity before timet”. For many ap-
plications, though, real-time constraints are typically less
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stringent. Rather than requiring that certain activitiesmust
alwaysoccur before timet, in practice one is usually inter-
ested in more ‘soft’ real-time constraints, where a system is
required to perform the activitymostlybeforet. In this pa-
per we concentrate on such soft real-time constraints. The
soft real-time requirements of systems typically have to do
with their performance characteristics, and are often also
referred to as their quality-of-service parameters. They are
usually related to stochastic aspects of various forms of time
delay, such as, for example, mean and variance of message
transfer delay, service waiting times, failure rates, utilisa-
tions, etc.

Traditionally, there has been a clear separation between
the functional and performance aspects of systems, and as a
result different communities have constructed and analysed
their own, largely unrelated models for the aspects under
their responsibility. In modern systems, though, the dif-
ference between functional and performance features has
become blurred, and both features are becoming of com-
parable interest. Thus, it would be beneficial to be able to
check how changes in functionality affect performance is-
sues, and vice versa. In addition, one would like to have
a better relationship between the models that are used for
qualitative and quantitative analysis, and avoid the use of
different models for different aspects that are mutually in-
compatible. A single framework where both aspects could
be defined would be highly desirable.

In this paper we take a stochastic point of view with re-
spect to soft real-time constraints. Typical constraints that
we support are of the form: “the system should perform an
activity before timet in 92% of the cases”. We propose a
high-level specification language for soft real-time systems.
Here, state changes take place at discrete points in time, but
the time of occurrence of activities is controlled by random
variables. In contract to most formalisms that are restricted
to a particular set of probability distributions, like negative
exponential or discrete distributions, we support arbitrary
distributions, discrete or continuous. This makes the lan-
guage more expressive and more interesting from a practical
point of view. The language is based on process algebra and
has been christened SPADES (Stochastic Process Algebra



for Discrete-Event Simulation, symbolised by). The use
of a process algebra facilitates the description of systems
in a modular and well-structured way. The algebraic nature
of the language allows reasoning about specifications in an
equational way, thus facilitating step-wise design and min-
imisation.

Stochastic automata, a variant of timed automata [2]
where clocks are initialised randomly and run backwards,
are used as the underlying semantic model. These automata
have an interpretation in measure theory, and due to the pos-
sibly continuous nature of probability distributions, the re-
sulting interpretation model is infinite. We will, however,
show that for checking qualitative properties, in particu-
lar reachability analysis — the key technique in checking
safety properties — a symbolic algorithm at the level of
finite stochastic automata suffices. Reasoning about such
properties can thus take place without delving into the mea-
sure theory underlying the formalism. In fact, it turns
out that such an analysis can be viewed as being carried
out on ordinary labelled transition systems. Consequently,
well-known techniques can be applied to reduce the com-
plexity of the reachability analysis. In the prototype tool-
implementation, partial-order reduction techniques [11] are,
for instance, applied.

In addition we will show how a stochastic simulation
model can be obtained from a-specification in an auto-
matic way. This facility enables a discrete-event simulation
that gathers statistics about the system specification to be
carried out. An interesting aspect of this algorithm is that
the modularity of facilitates the “on-the-fly” generation
of the simulation model in the sense that the state space is
constructed dynamically and requires minimal storage. This
means that we are not forced to construct the entire stochas-
tic automaton a priori, as it suffices to store only the current
state, and generate new states when they are needed.

A prototype implementation of the simulation and reach-
ability algorithms has been made and several case-studies
have been specified and analysed: the IEEE 1394 root-
contention protocol [27], several classical queueing systems
known from performance analysis, and a dynamic wave-
length reconfiguration in optical networks [26].

Organisation of the paper. Section 2 introduces the pro-
cess algebra and stochastic automata. Probabilistic tran-
sition systems are presented in Section 3. Section 4 presents
the discrete-event simulation. Section 5 covers the reacha-
bility analysis. A fault-tolerant multiprocessor case-study is
described in Section 6. Section 7 concludes the paper.1

Related work. Since 1990, many extensions of process
algebras have been investigated in which the delay of ac-

1A preliminary version was presented at the PAPM workshop (Tech.
Rep., Univ. Verona, pp 85–102, 1998).

tions is determined by (continuous) distribution functions.
In languages like TIPP [15], PEPA [17] and EMPA [3] ex-
ponential distributions are used. Due to the memoryless
property of exponential distributions the semantics of these
languages can be adequately described using labelled transi-
tion systems that closely resemble continuous-time Markov
chains. In fact, our approach can be considered as general-
ising this line of research in the direction of simulation. We
support arbitrary distributions and combine simulation with
qualitative analysis.

Another process algebra for discrete-event simulation
has been presented in [13] and applied to a cache coherency
protocol in [9]. The semantic objects are infinite. To sim-
ulate a specification it is translated intoC++ and some
simulation libraries are used. Although their work is re-
lated to ours, we use a different process algebra, allow non-
determinism and use the concept of adversaries [28, 24] for
its resolution, and obtain (for most processes) finite stochas-
tic automata. Recently, an alternative process algebra to de-
rive simulation models, called GSMPA [6], was proposed.
To our knowledge for this language there is no tool support
available. No support for qualitative analysis is incorpo-
rated in [6, 13, 9].

Other works that relate simulation models (or languages)
to process algebra are [23, 4]. In these works, the approach
is different: rather than generating a simulation automati-
cally from a process algebra specification (as we do), they
use process algebra as a semantical model for simulation
languages. In addition, these works do not take probabilis-
tic timing into consideration.

2. The stochastic process algebra

Syntax. LetA be a set ofactions,V a set ofprocess vari-
ables, andC a set of clocks with(x;G) 2 C for x a clock
name andG an arbitrary probability distribution function
satisfyingG(t) = 0 for t < 0. We abbreviate(x;G) by xG.

Definition 1. The syntax of is defined by:

p ::= stop j a; p j C 7!7!p j p+ p j fjCjgp j
p jjA p j p[f ] j X:

whereC � C is finite, a 2 A, A � A, f : A ! A, and
X 2 V. A recursive specificationE is a set of recursive
equations of the formX = p for eachX 2 V, wherep 2 .
E is calledguardedif for every recursive equationX = p
in E, all process variables inp appear in a sub-term of the
form a; q. 2

The basic processstop cannot perform any action. The
processa; p can immediately perform an actiona and then
behaves likep. ProcessC 7!7!p behaves likep after expira-
tion of all clocks inC. Processp + q behaves either asp
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or q, but not both. During execution the fastest process, i.e.
the process that is enabled first, is selected. This is known
as therace condition. If this fastest process is not uniquely
determined, a non-deterministic selection among the fastest
processes is made.fjCjgp behaves likep after all clocks in
C have been initialised according to their distribution func-
tion. jj stands for parallel composition. In processpjjAq,
processesp and q perform actions autonomously, but ac-
tions inA should be synchronised. Finally, the processp[f ]
behaves likep except that actions are renamed by function
f . We abbreviatefjxGjgfxGg7!7!a;P by a(xG);P .

Stochastic automata.The semantics of our process algebra
is defined in terms of stochastic automata, a model that is
related to timed automata [2] and generalised semi-Markov
processes (GSMPs, [10]).

Definition 2. A stochastic automatonis a tuple
(S; s0; C;A; �! ; �; F ) whereS is a non-empty set ofloca-
tions, s0 2 S is theinitial location, C is a (countable) set of
clocks,A is a set ofactions, �! � S�(A�}�n(C))�S is
the set ofedges, � : S ! }�n(C) is theclock-setting func-
tion, andF : C ! (IR ! [0; 1]) is theclock-distribution
function. 2

We denote(s; a; C; s0) 2 �! by s a;C���! s0, usex and
y to denote clocks, and abbreviateF (x) byFx. To each lo-
cations a finite set of clocks�(s) is associated. As soon as
locations is entered any clockx in this set is initialised ran-
domly according to its probability distribution functionFx.
Once initialised, the clocks start counting down, all with the
same rate. A clock expires if it has reached the value 0. The
occurrence of an action is controlled by the expiration of
clocks. Thus, whenevers a;C���! s0 and the system is in lo-
cations, actiona can happen as soon as all clocks in the set
C have expired. The next location will then bes0.

Semantics. To associate a stochastic automatonSA(p) to
a given termp in , we define the different components
of SA(p)2. In order to define the automaton associated to
a parallel composition, we introduce the additional opera-
tion ck. ck(p) is a process that behaves likep except that no
clock is set at the very beginning. As usual in structured op-
erational semantics, a location corresponds to a term. Thus,
the set of locations equals[ fckg. The clock setting func-
tion� is defined by induction on the structure of expression:

�(stop) = �(a; p) = �(ck(p)) = ?
�(C 7!7!p) = �(p[f ]) = �(p)
�(p+ q) = �(p jjA q) = �(p) [ �(q)
�(fjCjgp) = C [ �(p)
�(X) = �(p) for X = p

2Here we assume thatp does not contain any name clashes of clock
variables. This is not a severe restriction since any term that suffers from a
name clash can be properly renamed into a term without a name clash [7].

Table 1. Stochastic automata for

a; p a;?���! p

p a;C0����! p0

fjCjgp a;C0����! p0

p a;C0����! p0

C 7!7!p a;C[C0������! p0

p a;C���! p0

X a;C���! p0

p a;C���! p0

p+ q a;C���! p0

q + p a;C���! p0

p a;C���! p0

p[f ]
f(a);C
�����! p0[f ]

p a;C���! p0

ck(p) a;C���! p0

p a;C���! p0

p jjA q a;C���! p0 jjA ck(q)

q jjA p a;C���! ck(q) jjA p0

(a =2 A)

p a;C���! p0 q a;C0����! q0

p jjA q a;C[C0������! p0 jjA q0
(a 2 A)

The set of edges�! between locations is defined as the
smallest relation satisfying the rules in Table 1. The func-
tionF is defined byF (xG) = G for each clockx in p. The
other components are defined as for the syntax of.

Stochastic automata and are equally expressive [7].
This means that for any (finitely branching3) stochastic au-
tomaton a corresponding (guarded recursive) term in the
language can be given in which the reachable part of its
stochastic automaton is identical to the stochastic automa-
ton at hand.

Example 3.Consider a processor that can process user jobs
(like database transactions) and programmer jobs (like com-
pilation). Jobs are queued according to the FIFO principle;
there is a single queue per job type. There is no priority
on the processing of jobs: if there is a job of both types to
be processed, a job is selected non-deterministically. Trans-
ferring a job from the queue to the processor takesd time
units with a fluctuation of�, distributed uniformly. (To
model this, the activity is split into two actions and a de-
lay is incorporated between them.) After loading a job,
the processor executes it. The execution time of a job is
distributed according to a-distribution with parameters
(a; a0) for user jobs and with(b; b0) for programmer jobs.
The system is subject to failures. When a failure occurs,
the processor aborts its activity. When the system is re-
paired, which takes a certain-distributed delay, the pro-
cessor restarts in its initial state. A specification of this

3A stochastic automaton is finitely branching if for every location the
set of outgoing edges is finite.
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system is:Pjjffail ;repairgMaintain, where

P= getUJobBeg ; (getUJobEnd (yG);PWU+ PF)
+ getPJobBeg ; (getPJobEnd (yG);PWP+ PF)
+ PF

PWU= UJobReady(v(a;a0));P+ PF
PWP= PJobReady(w(b;b0));P+ PF
PF= fail; repair ;P

Maintain= fail; repair(z(c;c0));Maintain:

HereG stands for a uniform distribution on[d��; d+�]. The
stochastic automaton corresponding toP is:

failgetU
JobBeg

repair

PJobReady, wUJobReady, v ge
tP

Jo
bB

eg

ge
tP

Jo
bE

nd

fail

fail
fail

fail
y

v w

y

ge
tU

Jo
bE

nd

2

3. Probabilistic transition systems

Timed automata have a formal interpretation in terms of
timed transition systems where states keep information
about the current location and the values of the clocks [2].
Similarly, stochastic automata have a formal semantics in
terms of a probabilistic transition system (PTS). We define
the notion of a PTS and show how locations and values of
clocks will come into play. A PTS is related to the alternat-
ing model of [12]. We assume some familiarity with basic
measure theory; for an introduction see [20]. Let
 be a
sample space andF be a�-algebra on
.

Definition 4. A probabilistic transition system(PTS) is a
tuple(�;
; �0;L; T;�!) where� and
 are disjoint sets
of states, �0 2 � is the initial state, L a set oflabels, T :
�! (F ! [0; 1]) theprobabilistic transition relation, and
�! � 
 � L � � is the labelled (or non-deterministic)
transition relation, such that

8� 2 �: T (�) is a probability measure onF

2

� is the set ofprobabilistic states and
 the set ofnon-
deterministicstates. SinceT is defined as a (total) function,
each probabilistic state has exactly one outgoing transition
to a function on�-algebras. Intuitively, in general there is a
continuum of transitions each attached with a certain prob-

ability. We write�0
`
�! � for h�0; `; �i 2 �!, and�0 6

`
�!

for :9�: �0
`
�! �.

Since we are interested in the timing of actions, letL =
A� IR>0, whereA is a set of action names andIR>0 is the
set of non-negative real numbers. We denotea(d) instead of

(a; d) for (a; d) 2 L. The meaning of�
a(d)
�!�0 is that action

a occurs after the system has been idle ford time units in
state�, and state� changes into�0.

In the following we give two interpretations of stochastic
automata in terms of PTSs and describe their difference.

Closed interpretation. In order to study the performance
characteristics of a system, it is usually regarded as aclosed
system, i.e. a system which is complete by itself and which
needs no external interaction. Typically, a closed system
consists of the components of the intended system together
with the environment with which it interacts. In this closed
system view there is no need to delay activities any further
once they are enabled, since there will be no further (ex-
ternal) processes that can delay their execution. Formally,
this means that closed systems display themaximal progress
property. This is made explicit in the following interpreta-
tion.

For clockx let v(x) 2 IR denote the value ofx; function
v is called avaluation. LetV be the set of all valuations on
C. Ford 2 IR>0, we define valuationv�d by (v�d)(x)

def
=

v(x)�d, for all clocksx.
Let SA = (S; s0; C;A; �! ; �; F ) be a stochastic au-

tomaton andn the cardinality ofC. A probabilistic state
is a pair consisting of a location and a valuation. The
setS � IRn is the set of non-deterministic states and acts
as the sample set for the underlying�-algebra for which
we take the Borel algebraB(S � IRn) [20]. Notice that
for any locations and valuationv there is a unique tuple
(s; v(x1); : : : ; v(xn)) 2 S � IRn. We denote such ele-
ments simply by[s; v]. For convenience we use the predi-
cateexpd(v; C) which is true iff all clocks inC have expired
in v afterd time units, i.e.

8x 2 C: (v�d)(x) 6 0

and the predicatemprd(s; v; C) which is true iff there is no
possibility to leaves within d time units, i.e. for alld0 2
[0; d) we have

8s; b; C 0: s b;C0���!, 9y 2 C 0: (v�d0)(y) > 0

Definition 5. Theclosed interpretation ofSA in the initial
valuationv0, denotedC[[SA ]]v0 , is the PTS

(S � V ;S � IRn; (s0; v0);A� IR>0; T;�!)

where the probabilistic transition relationT is defined by:

T (s; v)
def
= P s

v (1)
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whereP s
v is the unique probability measure onB(S � IRn)

induced by the distribution functionsF0
def
= Is andFi

def
=

if xi 2 �(s) then Fxi else Iv(xi), with 0 < i 6 n andI

being the indicator function defined byId(d0)
def
= if d = d0

then 1 else0.
Ford 2 IR>0, relation�! is defined by:

s a;C���! s0 ^ expd(v; C) ^ mprd(s; v; C)

[s; v]
a(d)
�! (s0; v�d)

(2)

2

An edge s a;C���! s0 is enabled in valuationv, which
we denoteenabled(s a;C���! s0; v), if it induces a non-
probabilistic transition from[s; v]. In particular, notice that
s a;?���! s0 is enabled for any valuationv.

Rule (1) is concerned with the setting of the clocks.
Since the values of clocks are assigned randomly, a prob-
abilistic transition corresponds to this step. Clocks in�(s)
randomly take a value according to their associated distribu-
tion function. The indicator functions take care that the sys-
tem stays in the same location and that the values of clocks
that are not intended to be set (i.e. those not in�(s)) remain
unchanged.

Rule (2) deals with the triggering of an edge. If we have
an edges a;C���! s0, in which actiona occurs at timed, and
all clocks inC have expired at timed, and there is no edge
that has all its clocks expire befored, then the edge is trig-
gered. Note that maximal progress is ensured by the last
predicate.

Open interpretation. In order to study reachability prop-
erties like freedom from deadlock, it is important to observe
how the system behaves in an arbitrary context. That is, the
interaction of a system with a certain “well-behaved” com-
ponent may not induce a deadlock, while a “badly-behaved”
component could take the system through an undesired path
that will end in a deadlock situation. For this reason the in-
terpretation of a stochastic automata as a closed system is
not sufficient.

If we interpret a stochastic automaton as an open system
we let the system interact with its environment. The envi-
ronment can be a user or another system. Basically, an open
system is a component of a larger system. In an open sys-
tem, an action that is enabled may not be executed until the
environment is also ready to execute such an action. There-
fore, an activity may not take place as soon as it is enabled.
In other words, the maximal progress property is no longer
valid.

Definition 6. Theopen interpretation ofSA in the initial
valuationv0, denotedO[[SA ]]v0 , is the PTS

(S � V ;S � IRn; (s0; v0);A� IR>0; T;�!)

whereT is obtained as in Definition 5, and�! is defined
for non-negatived by the rule

s a;C���! s0 ^ expd(v; C)

[s; v]
a(d)
�! (s0; v�d)

(3)

2

Notice that the only difference between the open and closed
semantics is that the constraint of maximal progress is
present in (2) but not in (3).

4 Discrete event simulation

A system specification in contains functional and quan-
titative aspects. In order to understand the impact of the
stochastic delays in the specification on measures of in-
terest like throughput and response time, we consider the
analysis of a specification. Since arbitrary distributions
are allowed in , we cannot use analytical or numerical
techniques as they are applicable only in restricted cases,
e.g., when all delays are governed by negative exponential
distributions. We therefore take a more general approach
and usesimulation, in particular discrete-event simulation,
where in contrast to continuous-time simulation techniques,
state changes take place at discrete points in time — but
time itself is continuous. In a simulation, runs (also called
sample paths) are generated, and on the basis of these runs
data is gathered and analysed to determine (an estimation
of) the desired measure of interest. The reliability of the es-
timate is given by a confidence interval. This approach will
be illustrated later; here we address the problem of gen-
erating simulation runs from a stochastic automaton, ex-
pressed as a specification. The main problem we must
address is the resolution of possible non-determinism in a
stochastic automaton. Although it is widely recognised that
non-determinism is of significant importance in a step-wise
design methodology for the purpose of under-specification,
it must be resolved when a simulation is carried out. We
discuss how non-determinism is resolved for PTSs, and for
stochastic automata.

Runs and adversaries. A run of a PTS T =
(�;
; �0;L; T;�!) is a path obtained by traversingT
starting from its initial state�0.

Definition 7. A run � of T is a (finite or infinite) sequence
�0�

0
0`1�1�

0
1`2 : : : `n�n�

0
n for n 2 IN [ f1g such that, for

all 0 6 i < n: (i) @
@!

F (�0i) > 0, (ii) �0i
`i+1
�! �i+1, and (iii)

if � is finite and non-empty, then�0n 2 
. 2

Here, @
@!

F can be interpreted as the density function ofF .4

Constraint (i) states that probabilistic steps should be prob-
able ones, as we want the simulator to generate runs with

4Because we allow arbitrary distributions, the definition of the differ-
ential operator @

@!
is quite involved [20].
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positive probability only. Constraint (ii) is self-explanatory,
and constraint (iii) states that a non-empty and finite run
should end in a non-deterministic state. If run� is finite,
then we letlast(�) denote its final state. We denote the set
of finite runs ofT by Runs(T ).

Non-determinism is useful for under-specifying “how
often” an alternative is chosen. This information is usu-
ally not available in the early steps of the design, or it is
deliberately left unspecified. If we are to study the perfor-
mance of such system specifications, the idea is to impose
an additional mechanism — called ascheduleroradversary
[28, 24] — on top of the system. If the system has reached
a state in which a choice must be made between several
non-deterministic possibilities, the adversary will make the
choice. One thus considers a system (in our case a PTS
T ), that contains a certain implementation freedom, in the
context of an adversaryA. T can be viewed as the system
specification, andA as the representation of the architecture
on which the system is realised. The pair(T ;A) is thus the
entire system under consideration. Furthermore, the simu-
lation data forT that is obtained should be considered with
respect to the adversaryA.

Definition 8. An adversaryA is a partial function
Runs(T ) ! ((�!) ! [0; 1]) such that for all� 2
Runs(T ) for which the (countable) sample space
(�) is a

non-empty subset of
n
�0

`
�! � j last(�) = �0

o
: A(�)

def
=

P for some discrete probability measureP on the (discrete)
�-algebra}(
(�)). 2

This notion can be lifted to stochastic automata as follows:
a run of a stochastic automaton is a run of its underlying
(closed) semanticsC[[SA ]]v0 . Notice that for a given non-
deterministic state[s; v], the next transition is fully deter-
mined byv and the outgoing edges froms.

Definition 9. Let SA = (S; s0; C;A; �! ; �; F )
be a stochastic automaton with closed interpretation
T = C[[SA ]]v0 . An adversaryA for SA is a par-
tial function Runs(T ) ! ((�! ) ! [0; 1]) such
that for any run� 2 Runs(T ) for which the (count-
able) sample space
0(�) is a non-empty subset of:n
s a;C���! s0 j last(�) = [s; v] ^ enabled(s a;C���! s0; v)

o
.

A(�)
def
= P for some discrete probability measureP on

the (discrete)�-algebra}(
0(�)). 2

The simulation algorithm. The simulation algorithm is
implemented as avariable time-advance procedure[25]. In
this procedure time steps are of varying length and there
is an event in every simulated time step. The simulation
is controlled by the occurrence of “next events” and the
simulation time between the occurrence of two events is
“skipped”.

In our setting, the simulation algorithm requires the fol-
lowing inputs: (i) a specificationE representing the sys-
tem, (ii) an adversaryA that resolves non-determinism in
E, and (iii) the initial processp0. It is assumed that the ini-
tial valuationv0 equals 0 for all clocks. (For a processp0
that does not contain free clock variables this poses no re-
striction.) The detailed structure of the simulation algorithm
is depicted in Figure 1.

Since in our semantics (cf. Table 1) a location corre-
sponds to a term, simulation can be carried out on the ba-
sis of expressions rather than using their semantic repre-
sentation. This means that the stochastic automaton is not
entirely generated a priori but only the parts that are re-
quired to choose the next step. The simulation starts in
state(p0; v0), the initial state of the (closed) PTS underly-
ing SA(p0). Once started, the stochastic automaton is con-
structed in an on-the-fly fashion on the basis of the current
termpi (i.e. location) and the input specificationE. From
termpi the set of clocks�(pi) to be set is determined (by
module (A) in Figure 1) and the set of possible next edges
is computed according to the inference rules of Table 1 (by
module (B)).

To compute the next valuation we only need to keep
track off the last valuationvi. Each clockxG in �(pi) is
assigned a random value according to the distributionG,
while the other clocks remain unchanged (this is done by
module (C)). This step corresponds to the rule (1) in Defi-
nition 5.

Given the new valuation and the set of possible edges, we
now want to select an edge. From the set of possible edges
(calculated by module (B)), the subset of enabled edges is
selected. This step corresponds to rule (2) in Definition 5.
From this set of enabled edges (if any), an edge is selected
by the adversaryA in a probabilistic fashion. This is done
by module (D).

The actual traversal of the selected edge is carried out by
module (E). This involves the calculation of the next step, as
defined by rule (2). More precisely, module (E) determines
the executed actionai and its timingdi plus the next state
(pi+1; vi+1) with vi+1 = v0i�di. Starting from this state the
next step in the run is determined by module (B).

Finally, the measure of interest (e.g., throughput, utili-
sation and response time) needs to be computed from the
generated simulation run. For that purpose, information is
gathered from the run and analysed. This is done by module
(F). This component is user-driven, since the calculations to
be performed are determined by the user.

Prototype implementation. We have implemented a pro-
totype of the simulation algorithm using the functional lan-
guage Haskell 1.4 [14]. In this implementation we have
confined ourselves to guarded recursive specifications. Un-
guarded recursion could yield an infinite set of outgoing
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Figure 1. Schema of the simulation algorithm

edges or an infinite set of clock settings, in which case mod-
ules (D) and (E) would never finish their computations. In
the current implementation we only deal with adversaries
that are history-independent in the sense that if adversaryA
satisfies the propertylast(�) = last(�0) thenA(�) = A(�0).
Hence, we can probabilistically select an enabled next edge,
using only the current location and not the locations visited
before. We are therefore not required to store a complete
run. This assumption reduces the space complexity of the
simulation algorithm. We discuss some improvements to
this treatment of adversaries in the final section of the pa-
per. Notice that modules (C) and (D) require the use of
“randomness” for which we use a random number gener-
ator. This is a multiplicative linear congruential generator
with modulusm = 231 � 1 and multipliera = 16807 and
is based on Schrage’s algorithm [19].

5. Reachability analysis

Complementary to the quantitative analysis described
above, we discuss in this section a classical analysis tech-
nique for functional correctness — reachability analysis.
Reachability analysis is the key technique in proving safety
properties (often characterised as properties of the type
“something bad can never happen”). A typical reachability
property is the absence of a deadlock, which is a state from
which no further progress can be made. In order to check
such properties for stochastic automata, and thusterms,
the underlying semantics in terms of probabilistic transition
systems needs to be examined. However, even for finite
terms, these transition systems are infinite due to the fact
that distributions are continuous. We therefore consider a
symbolicreachability analysis. Using a symbolic analysis
we can avoid having to build and examine the infinite un-
derlying PTS. Instead, we check at the level of stochastic

automata. We investigate this for the open and closed in-
terpretation of stochastic automata and confine ourselves to
finite stochastic automata.

Foundations. We first define the notions of reachability
in a PTS and in a stochastic automaton and investigate their
correspondence.

Definition 10. Let T = (�;
; �0;L; T;�!) be a PTS.
State�0 2 
 is reachableif and only if there exists a fi-
nite run� 2 Runs(T ) such thatlast(�) = �0. The set of
reachable states ofT is denotedReach(T ). 2

Definition 11. Let SA = (S; s0; C;A; �! ; �; F ) be a
stochastic automaton. Asymbolic runof SA is a finite se-
quences0a1C1s1 : : : sn�1anCnsn, n > 0, such that, for all
0 < i 6 n, si�1

ai;Ci����! si. 2

Locations is reachable if there exists a symbolic run that
ends ins. The set of reachable locations ofSA is denoted
Reach(SA).

Lemma 12. Let SA be a stochastic automaton with open
interpretationO[[SA ]]v0 . Then:

s a;C���! s0 , 8v 2 V : (9d 2 IR>0: [s; v]
a(d)
�! (s0; v�d))

Stated in words: there is a transition from locations to s0 if
and only if in the open semantics there is a transition from
non-deterministic state[s; v] to probabilistic state(s0; v�d),
for any valuationv. The “(” part of the lemma follows in
a straightforward way: there can only be a transition in the
semantics if there is a corresponding edge in the stochastic
automaton. The “)” part holds, because ifs a;C���! s0 for
a given valuationv, there always exists a sufficiently large
d such thatv�d is at most 0 for all clocks inC (e.g. letd
be the maximum clock value inv of all clocks inC). Thus,

7



expd(v; C) holds. Consequently there is a transition in the
open semantics, due to rule (3) in Definition 6. As a result,
every symbolic run ofSA has a corresponding finite run in
O[[SA ]], and vice versa.

Theorem 13.

s 2 Reach(SA), 9v 2 V : [s; v] 2 Reach(O[[SA ]]v0)

We will now consider the closed interpretation. Recall that,
as opposed to the open interpretation, in the closed interpre-
tation an edge can only be taken, if there is no earlier point
in time at which the current location can be left (maximal
progress). As a consequence, certain edges present in the
stochastic automaton need not result in a transition in the
underlying closed PTS, since there exist competitive edges
that are “faster” and thus will be taken instead. Technically
speaking, the “)” part of Lemma 12 does not hold any-
more. Instead we have the following lemma:

Lemma 14. Let SA be a stochastic automaton with closed
interpretationC[[SA ]]v0 for v0 2 V . For anyv 2 V :

1. if [s; v]
a(d)
�! (s0; v�d) for some d 2 IR>0 then

s a;C���! s0 for someC � C

2. if [s; v] 6
a(d)
�! for all a 2 A, d 2 IR>0, thens

b;C
����!= ,

for all b 2 A, C � C

The first part of the lemma follows immediately from rule
(2) in Definition 5. The second part can be proven by con-
tradiction. Suppose thats a;C���! s0. Then (as we argued
above) it followsexpd(v; C). For the smallest̂d for which
exp

d̂(v; C) holds, it followsmpr
d̂(s; v; C), and by rule (2)

it follows [s; v]
a(d̂)
�! (s0; v�d̂). Contradiction.

As a result, every finite run ofC[[SA ]] has a correspond-
ing symbolic run ofSA (but not the reverse).

Theorem 15.

s 62 Reach(SA)) 8v 2 V : [s; v] 62 Reach(C[[SA ]]v0)

This result is e.g., sufficient to check for freedom of dead-
lock: if SA does not have a reachable deadlock state,
C[[SA ]] is deadlock-free.

These results allow us to carry out reachability analysis
at a purely symbolic level, i.e., without the construction of
the underlying infinite probabilistic transition system and
without using the clock information in the stochastic au-
tomaton. In this way we can exploit existing tools like SPIN

[18] for carrying out the reachability analysis. Furthermore,
given the highly expressive power of(by which we mean
the support of arbitrary distributions), this is the best one
can achieve symbolically. If we want more information,
like the probability of a deadlock, we can either resort to
discrete-event simulation or to model checking techniques

similar to those for timed automata. The latter are, however,
only applicable to highly restricted classes of distribution
functions [1].

Prototype implementation. The above theorems pro-
vide the formal basis for applying reachability analysis to
stochastic automata. While the discrete-event simulation
algorithm can be applied to any (guarded) specification in

, reachability analysis can, for obvious reasons, only be
applied to terms that give rise to finite stochastic automata.
These terms are defined by the following syntax:

q ::= stop j a; q j C 7!7!q j q + q j fjCjgq j X

p ::= q j q[f ] j p jjA p

Terms constructed using the first clause are sequential pro-
cesses; terms constructed using the second clause are par-
allel processes. The current implementation requires that
the recursive specification that defines the process variables
contains finitely many guarded recursive equations of the
formX = q. That is, a specification must have only finitely
many process variables and each of them must be defined
by guarded sequential processes.

The reachability analysis algorithm is implemented in
Haskell 1.4 [14] as part of the discrete-event simulator. The
algorithm has two inputs: a parallel process (the system
specification) and a characterisation of the location(s) to be
checked for reachability. If the given location is reachable,
the algorithm returns the symbolic execution that ends in the
location. The implementation is based on a selective state
space search using a partial-order reduction technique based
on persistent sets [22, 11]. The advantage of this technique
is that the stochastic automata needs to be constructed only
when it is demanded. In this way, completely constructing
the stochastic automaton for every sequential process in the
specification can be avoided.

6. A fault-tolerant multiprocessor

To illustrate our approach to the specification and analy-
sis of a soft real-time system, we consider a fault-tolerant
multiprocessor system. This example is adopted from [16]
where all activities are delayed according to a negative
exponential distribution. Instead, we will use arbitrary
distributions5 , and analyse qualitative and quantitative
properties using our prototype tool. The architecture of the
multiprocessor system is presented in Figure 2.

The processors in the system are of the type described
in Section 2 and are able to process two types of jobs: pro-
grammer and user jobs. These jobs are generated by load

5Distribution functions for the example were chosen arbitrarily with the
intention of showing the versatility of and the prototype implementation.
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Figure 2. Architecture of the multiprocessor system

processes, one per type of job, and one load process that
generates failures. The variation of the load in time — thus
distinguishing between peak loads, low loads and no load
— is determined by a component “change phase” that is
only incorporated for modelling purposes. User and pro-
grammer jobs are queued. When a failure occurs, the sys-
tem components (except the load generating components)
are immediately halted. They are restarted as soon as the
failure is repaired.

Compositional specification. The system consists of
three parts: the mainframe itself, the maintenance module,
and the system load. Accordingly:

System= LoadjjL (MainframejjF Maintain)

whereL = fusrJob; prgJob; failg andF = ffail ; repairg.
ProcessLoad models the user and programmer load, and
the failure occurrences:

Load= PLd1 jjfcgg ULd1 jjfcgg FLd1 jjfcgg ChPhase

ProcessChPhasemodels the variation of the load (action
cg) in time. Phases change according to a Weibull distribu-
tion function with parameters(v; w) (denoted byW(v; w)).

ChPhase= cg(xW(v;w));ChPhase

There are three phases. In the first phase, user jobs arrive
according to an exponential distribution with rate�1 (no-
tation e(�1)); in the second phase, arrivals are distributed
according toe(�2), and in the third phase no user job is gen-
erated. In any case, if a job cannot be queued because either
the queue is full or the system has failed, the job is simply
rejected (actionrj ). Similarly, programmer jobs arrive ac-
cording toe(�1) ande(�2) in the first and second phase, and
failures originate according toe(�1) ande(�2), respectively.
We model the occurrence of a system failure regardless how
many errors induce that failure. ProcessULd is specified as
follows; the processesPLdandFLd are defined in a similar

way.

ULd1 = nxtUJob(xue(�1)); (UJob;ULd1 + rj ;ULd1)

+cg ;ULd2

ULd2 = nxtUJob(xue(�2)); (UJob;ULd2 + rj ;ULd2)

+cg ;ULd3

ULd3 = cg ;ULd1

TheMainframeconsists ofQueuesand processorsPi. The
different processes are synchronised with the actionsfail
andrepair: when a failure occurs the complete system must
stop until it is repaired. Each processor is defined as in
Section 2. In addition, theQueuescommunicate with the
processors each time the processors get either a user or pro-
grammer job from the queue in order to process it.

Mainframe= QueuesjjG[F (P1 jjF � � � jjF Pm)

whereG = fgetUJobBeg ; getPJobBegg. The queues for
storing user jobs and programmer jobs are simple FIFO
queues and are defined in a standard way. The definitions
are omitted here.

Obtaining an adversary. We observe the following:

(a) In processULd non-determinism may arise between
actionsUJobandrj . We prefer not to reject a user job
if there exists a chance that the mainframe may become
available at the same moment. The same consideration
applies toPLdandFLd.

(b) A failure is an arbitrary event that at any moment may
disturb the normal execution of the system. For that
reason, failures are handled as soon as possible.

(c) User jobs are usually short activities, such as saving
a file or processing a small database transaction, that
have to be processed as soon as possible. Program-
mer jobs are more complicated tasks that may involve
compilation, simulation or testing of a system.

Given these observations we define a priority relation� as
the least (strict partial) order satisfying:

rj � a , a 6= rj

a � fail , a 6= fail

getPJobBeg � getUJobBeg

These priority relations are used to define an adversary. If
non-determinism remains after reducing the possible activ-
ities to be executed according to the defined priorities, then
the adversary resolves it according to a (discrete) uniform
probability distribution. Formally, the sample space
0(�)
is defined as:
n
s a;C���! s0 j last(�) = [s; v] ^ enabled(s a;C���! s0; v)

o
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Table 2. Parameters for the simulation
System Load Processing

m = 4 �1 = :033 �2 = 2 d = :021 e = :001

nu = 4 �1 = :0167 �2 = :16 a = :167 a0 = :5

np = 10 v = 300 w = 6 b = :167 b0 = 2:0
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Figure 3. Studying the length of the queues

Let pri(�) be the set of maximal elements in
0(�) accord-
ing to the order�, i.e.,pri(�) is:
n
s a;C���! s0 2 
0(�) j :9s b;C0���! s00 2 
0(�) ^ a � b

o

The adversary is then simply defined as follows:

A(�)(e)
def
= if e 2 pri(�) then

1

#pri(�)
else 0

Simulation results. We set the values of the different pa-
rameters according to Table 2. As in [16], we studied the
behaviour of the system with different queue lengths. We
ran several simulations changing the length of the queues
(with �1 = 0:0007, �2 = 0:00035, andc0 = 100). We can
see in Figure 3 that both user and programmer job through-
put stabilise when the user and programmer queue length
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Figure 5. Throughput User Jobs

are at least 4 and 5, respectively (notice that the planes Fig-
ure 3 become horizontal from that point on). As queues of
larger capacity do not affect the throughput, we takenu = 4
andnp = 10 (see Table 2).

Different simulations have been carried out while chang-
ing the parameters related to failure and repairing. In all
cases we took�2 = �1=2. For the repair time we takec = 1.
Hence, the average repair time equalsc0. The simulation re-
sults are depicted in Figures 4 and 5. Figure 4 represents the
availability of the system, that is, the percentage of time the
mainframe is processing jobs. Figure 5 depicts the through-
put of user jobs, i.e. the number of jobs that are processed
successfully per time unit.

To calculate the user job throughput, we simply count
the number of occurrences of actionUJobReadyper time
unit. To determine the availability we count the occurrences
of the actionfail per time unit, sayfpm, and then calculate
100 �(1�fpm�c0). Sincec0 is the average repair time,fpm�c0

is the fraction that the system is unavailable per time unit.
The simulations have been carried out using the method

of batch means. It consists of running a long simulation run,
discarding the initial transient interval, and dividing the re-
mainder of the run into several batches or subsamples [19].
We took 20 subsamples, each one of approximately 150000
minutes length. The values in the figures are the overall
averages. In every case, we calculated the respective confi-
dence interval. The (proportionally) widest confidence in-
terval was obtained for�1 = 0:0056 andc0 = 100 in the
case of the throughput:0:4473999�5:468 �10�4 with 99%
of confidence. In the case of counting failures, the widest
confidence interval was for�1 = 0:00035 and c0 = 10:
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1:63726 � 10�4 � 5:44 � 10�9 with confidence 99%.

Reachability analysis. Since the multiprocessor system
is finite, we are able to automatically check reachability
properties. We checked using the prototype that the pro-
cessMainframeis deadlock-free and does not have clock
name clashes.

7. Concluding remarks

In this paper we presented a high-level description language
for soft (i.e., stochastic) real-time systems that is based on
process algebra. The compositional nature of the language
facilitates the description of such systems in a modular and
well-structured way. We have presented a discrete-event
simulation algorithm that allows to gather statistics about
the system specification. The simulation algorithm takes as
input a process algebra specification and an adversary to re-
solve non-determinism, and automatically generates simu-
lation runs. This quantitative analysis technique is comple-
mented by an on-the-fly reachability analysis algorithm. As
a result, a unifying algebraic framework for the specifica-
tion and analysis of quantitative and qualitative properties
is obtained. This has been illustrated by treating a fault-
tolerant multiprocessor system. Future work will address
extensions and refinement of our methods, e.g. specifica-
tion of adversaries (along the lines of [8]), model checking,
and extending the current tool implementation.
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