This paper presents two novel input/output interface circuits, which realise a full period SH signal with the use of only one amplifier. The introduction of a half period delay between the input and output signal samples guarantees an optimal step-input settling response of the amplifier.

Stray-insensitive sample-delay-hold buffers: Fig. 2a shows a stray-insensitive sample-delay-hold (SDH) buffer suitable for biphase single-sampling SC filters. The transfer function of this circuit can be found from the difference eqns. 1 and 2:

\[\phi_2 = \frac{V_3(n) - C_2 V_4(n) - 2 + C_4 V_4(n) - 2/2}{A} \]
\[\phi_1 = \frac{V_3(n + 1) - C_2 V_4(n + 1) - 2 + C_4 V_4(n + 1) - 2/2}{A} \]

These equations include the effects caused by a finite open-loop gain A of the amplifier and by the stray capacitances at the circuit nodes 1, 2 and 3. For \(A \gg 1 \), the output signal of the SDH buffer only changes values at the beginning of clock phase \(\phi_1 \) and holds this value over a full clock period. A double-sampling implementation of the SDH buffer is shown in Fig. 2b.

Assuming identical parasitic capacitances at the nodes 1, 2 and 3 in Figs. 2a and b and \(C_1 = C_2 \), eqn. 1 is valid during both clock phases. For \(A \gg 1 \), the periodic output spectrum of the ideal SDH buffer is

\[V_{OUT}(o) \approx \sum_{n} V_{IN}(o) e^{-j2\pi n T} \left(1 - e^{-j2\pi T}\right)/2aT \]

with a sample period \(T \) and \(a_{2T} = 2\pi T \). Note that in the double-sampling implementation the sample frequency is twice the clock frequency. For applications of the SDH buffers in the video frequency range, high-performance amplifiers with a transconductance in the order of several mA/V and a slew-rate in the order of hundreds of mV/ns have to be used.

To prevent saturation of the amplifiers during the non-overlapping time slots of the biphase clock pattern, the continuous feedback technique, shown in Fig. 3, will be added to both SDH buffers.

Fig. 2A Single-sampling SDH buffer
Fig. 2B Double-sampling SDH buffer

This text discusses switched-capacitor (SC) circuits and their application in video frequency systems. It introduces the concept of stray-insensitive sample-delay-hold (SDH) buffers and presents equations for their transfer function.

Fig. 1A Standard delay-free SH buffer
Fig. 1B Timing diagram

Fig. 3 Continuous feedback technique

Experimental results: The single- and double-sampling SDH buffers have been realised using capacitances C_1, C_2, C_3, and C_4 of 0.28 pF. The switches are realised with transmission gates consisting of 60/2.5 μm NMOS and 60/3 μm PMOS transistors. The widths of the switch transistors in the feedback loops are 30 μm. The amplifiers are BiCMOS folded-cascode transconductance amplifiers with an experimental DC-gain of 69 dB and a unity-gain frequency of 98 MHz. The gain responses of the SDH buffers have been measured for clock frequencies of 1, 5, and 25 MHz. Fig. 4a shows the experimental gain response of the single-sampling SDH buffer for which the sample and clock frequency are equal. The experimental results of the double-sampling SDH buffer are shown in Fig. 4b for the same clock frequencies. The doubling of the sample rate is demonstrated clearly. Fig. 5 shows the phase response of the single- and double-sampling SDH buffer for a 25 MHz clock frequency. The ideal phase response $-2\pi f_{\text{CLOCK}}$ is met very closely. The circuits operate at a ±2.5 V power supply. The experimental dynamic range for 1% distortion (0.8 Vp-p input signal) is 52.5 dB for the double-sampling SDH buffer (bandwidth = 5 MHz) and 49.5 dB for the single-sampling version (bandwidth = 2.5 MHz).

Conclusions: Two stray-insensitive switched-capacitor sample-delay-hold buffers for video frequency applications are presented. Both buffers use only one amplifier and can be used as input or output stage for SC video frequency filters.

Acknowledgments: This work was supported by the Dutch Program for Innovative Research (IOP IC-TEL 46-011). The authors wish to thank Philips Nijmegen, The Netherlands, for the processing of the circuits.

J. J. F. RIJS
H. WALLINGA
IC-Technology and Electronics Group
MESA Institute
Faculty of Electrical Engineering
University of Twente
PO Box 217
7500 AE Enschede, The Netherlands

References

ERROR PROBABILITY OF COHERENT PSK AND FSK SYSTEMS WITH MULTIPLE COCHannel INTERFERENCES

Indexing terms: Errors, Phase-shift keying, Frequency-shift keying, Interference, Noise

The symbol error probability of binary and quaternary CPSK, and binary CPSK systems with multiple cochannel interferences and Gaussian noise is investigated. Numerical results obtained by using the Monte Carlo method are presented as an example.

Introduction: A great amount of work has been devoted to evaluating the performance of digital communication systems with interference and noise. But only an upper bound on error probability is given for the case of multiple interferences with unequal amplitude. It seems rather pessimistic to take the upper bound as a design criterion. In this letter, the error probability of binary and quaternary CPSK and binary CPSK systems corrupted by multiple cochannel interferences and noise is investigated and a better result has been obtained.

Mathematical analysis: Three assumptions are made in the analysis.

(i) The noise is a zero-mean stationary Gaussian process. It can be written as

$$N(t) = N^o(t) \cos \omega_0 t - N^o(t) \sin \omega_0 t$$ \hspace{1cm} (1)

where $N^o(t)$ and $N^o(t)$ are zero-mean independent stationary low-pass Gaussian random processes with power equal to

$$\sigma^2 = E[N^o(t)^2] = E[N^o(t)^2] = E[N^o(t)]^2$$ \hspace{1cm} (2)

ELECTRONICS LETTERS 11th April 1991 Vol. 27 No. 8