Steady state fluorescence studies on lipase-vesicle interactions


Mosmuller, Eduard W.J. and Pap, Eward W.H. and Visser, Anton J.W.G. and Engbersen, Johan F.J. (1994) Steady state fluorescence studies on lipase-vesicle interactions. Biochimica et Biophysica Acta (BBA) - Biomembranes, 1189 (1). pp. 45-51. ISSN 0005-2736

open access
Abstract:The interaction of lipase from Candida cylindracea (CCL) with positively charged polymerizable surfactant vesicles was studied by the use of steady-state fluorescence techniques. The phase transition of vesicles composed of nonpolymerized and polymerized N-allylbis[2-(hexadecanoyloxy)ethyl]methylammonium bromide (ABHEMA Br) was determined in the absence of lipase, by measuring the change in fluorescence anisotropy of the membrane probe 1,6-diphenyl-1,3,5-hexatriene (DPH). The phase transition temperature for nonpolymerized vesicles is 49°C and for the polymerized analogues 45°C. Fluorescence anisotropy and resonance energy transfer measurements were used to illustrate the incorporation of the lipase in the vesicle membrane. These studies demonstrated that CCL is incorporated into the hydrophobic bilayer of the vesicle. By using an interfacial membrane probe 1-[4-(trimethylammonium)phenyl]-6-phenyl-1,3,5-hexatriene p-toluene sulphonate, TMA-DPH) and an internal membrane probe (DPH), it could be determined that the enzyme is incorporated more efficiently into nonpolymerized vesicles, and that the penetration of the enzyme into the bilayer is less deep in the case of the polymerized vesicles.
Item Type:Article
Copyright:© 1994 Elsevier Science
Science and Technology (TNW)
Research Group:
Link to this item:
Official URL:
Export this item as:BibTeX
HTML Citation
Reference Manager


Repository Staff Only: item control page

Metis ID: 106601