A General Method for the Determination of the Kinetic Stability of Macrocyclic Alkali-metal Complexes with Rates of Decomplexation below 10^{-3} s$^{-1}$

Wouter I. Ivema Bakker, Marijke Haas, Herman J. den Hertog, Jr., Willem Verboom, Dick de Zeeuw and David N. Reinholdt

Laboratory of Organic Chemistry, University of Twente, PO Box 217, 7500 AE Enschede, The Netherlands

Department of Internal Medicine, University Hospital Groningen, Oostersingel 59, 9713 EZ Groningen, The Netherlands

A general method has been developed for the determination of kinetic stabilities of macrocyclic alkali-metal complexes with rates of decomplexation (k_d) below 10^{-3} s$^{-1}$, by use of radioactive isotopes. This method offers the possibility to study the influence of the solvent polarity and of the salt concentration in solution on the rate of decomplexation of macrocyclic metal complexes. Further advantages are the small amounts of ligand required for these determinations and the simplicity of the method. Furthermore, it is possible by this method to study the 'degenerate' exchange of sodium for sodium and of rubidium for rubidium. By this method the kinetic stabilities of the sodium and rubidium complexes of calix[4]arenes 1-4 were determined. Calix[4]arene 3 forms kinetically very stable complexes with sodium and rubidium cations in acetone and Me$_2$SO in the presence of high concentrations of sodium cations in solution; half-life times of exchange are 855 (Na$^+$) and 528 (Rb$^+$) h in acetone and 352 (Na$^+$) and 845 (Rb$^+$) h in Me$_2$SO, respectively. The results of this method were verified by an independent 1H NMR spectroscopic method.

For our programme on the design and synthesis of kinetically stable alkali-metal cation complexes for medical applications\(^1\) such as organ imaging (radioimmuno-spectroscopy) and therapy (radioimmunotherapy),\(^2\) we need general and sensitive methods to evaluate the kinetic stabilities of these complexes.

Only a limited number of methods is known for the determination of the decomposition rate constant (k_d), which determines the kinetic stability. These are stopped-flow methods,\(^3\) methods based on 1H NMR spectroscopy\(^4\) and NMR spectroscopy of alkali-metal nuclei such as 7Li, 23Na, 39K, 85Rb and 133Cs\(^5\) and the competition method used by Crum for the spherands.\(^6\) The stopped-flow methods are limited to slow processes and processes that can be detected by spectrophotometry or conductometry. The NMR methods on the other hand, suffer from quadrupole broadening which decreases the sensitivity. Another disadvantage is that this method often depends on line-broadening and coilcence in a specific temperature window. Kinetically very stable complexes will not show coilcence at temperatures suitable for such NMR experiments, i.e., $T < 150$°C.\(^7\) The competition method used by Crum for the spherands (we used for the calix-spherands)\(^8\) comprising the exchange of alkali-metal ions from a non-deuterium-labelled complex to a partially deuterium-labelled complex, is limited to ligands that have in their 1H NMR spectra well separated signals of groups that can be simply introduced as the deuteriated form. Moreover, these groups should exhibit shift differences between the complex and the free ligand.\(^9\) So far this method has only been used in CDCl$_3$ saturated with D$_2$O and not in more polar solvents. The solvent polarity, however, may have a pronounced influence on the rate of decomplexation of metal complexes, as has previously been shown for the cryptands\(^7\) and cryptahemispherands.\(^1\) More importantly, it is not possible by this method to study the influence of interfering cations in solution. Finally, all the methods lack the possibility of studying the 'degenerate' exchange of sodium for sodium and rubidium for rubidium.

In this paper a general method for the determination of the kinetic stability of alkali-metal complexes is described, which comprises the exchange of radioactive metal ions complexed in a macrocyclic ligand with excess non-radioactive metal ions present in solution. The method allows the study of the influence of solvent polarity and of the salt concentration in solution on the rate of decomplexation of the complexes. Furthermore, the 'degenerate' exchange of sodium for sodium and rubidium for rubidium, can be studied by this method. In order to verify the validity of this method the rates were compared with those obtained with 1H NMR spectroscopy in the same solvent.

Results

The rates of exchange for the sodium and rubidium complexes of four calix[4]arenes 1-4 (Fig. 1) were determined from an analysis of the exchange of radioactive metal ions complexed in a macrocyclic ligand with non-radioactive metal ions present in solution. Furthermore, the effect of different solvents and of the different alkali-metal cations on the stability of the complexes was studied. To predict the behaviour of the complexes in vivo, it would be advantageous to determine the stability in aqueous solution. However, since the calix[4]arenes are insoluble in water, the exchange studies were carried out in acetone or Me$_2$SO. These solvents were selected because of their difference in polarity, and the fact that the calix[4]arenes and the alkali-metal picrates are both sufficiently soluble in these solvents. For the exchange studies, the calix[4]arenes were first complexed with radioactive sodium or rubidium cations by the addition of an aqueous solution of radioactive salt to an acetone solution of the calix[4]arene. The free salt was separated from the calix[4]arene complexes by the addition of chloroform to the solution and fourfold extraction with water. After evaporation of the solvent the radioactive complexes (ca. 25 x 10^{-5} mol) were dissolved in a 10 mmol dm$^{-3}$ non-radioactive salt solution. In this way solutions with a large excess of salt, as compared with the amount of the calix[4]arene (CSP) complex could be applied. At certain time intervals the complex was separated from the free salt and the ratio between complexed and free radioactive salt was determined. These ratios were plotted against time and the kinetic analysis was performed by non-
Fig. 1 Structures of the calixspherands 1–4

Fig. 2 Exchange of $^{88}\text{Rb}^+$ for Na^+ in acetone: □, 1; +, 2; ○, 3; △, 4

Fig. 3 Exchange of $^{88}\text{Rb}^+$ for Na^+ in Me$_2$SO: □, 1; +, 2; ○, 3; △, 4

linear curve-fitting to give half-life times for the exchange process. In all cases first-order kinetics was observed.

Results of the experiments in which the exchange of complexed Rb$^+$ for excess non-radioactive Na$^+$ present in the acetone or Me$_2$SO solutions was studied, are shown in Figs. 2 and 3, respectively. The low, but stable, level of [3-Rb]$^+$ is, most likely, due to additional unspecific binding of Rb$^+$ to 3. This unspecifically bound Rb$^+$ is quickly liberated, whereas the Rb$^+$ complexed in 3 is strongly bound. The same experiments were performed with the sodium complexes of the different calixspherands. For all four calixspherands a slow exchange of Na$^+$ for Na$^+$ in acetone was found. The results obtained in Me$_2$SO are shown in Fig. 4. Just as for Rb$^+$, unspecific binding of Na$^+$ to 3 was also observed.

The calculated half-life times for exchange in acetone and Me$_2$SO are depicted in Table 1. From this Table it is clear that the order of stability of the different complexes is the same in both solvents although there are differences in the rates of exchange (vide infra).

Besides the influence of the solvent on the stability of the complexes, the influence of the type of cation in solution was studied. For that purpose, potassium and rubidium picrate

Table 1 Half-life times in hours for the exchange of the different calixspherand complexes with sodium picrate in Me$_2$SO and acetone

<table>
<thead>
<tr>
<th>Solvent</th>
<th>Na$^+$</th>
<th>Rb$^+$</th>
<th>Na$^+$</th>
<th>Rb$^+$</th>
<th>Na$^+$</th>
<th>Rb$^+$</th>
<th>Na$^+$</th>
<th>Rb$^+$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acetone</td>
<td>655</td>
<td>1.3</td>
<td>400</td>
<td>175</td>
<td>835</td>
<td>528</td>
<td>125</td>
<td>63</td>
</tr>
<tr>
<td>Me$_2$SO</td>
<td>42</td>
<td>0.2</td>
<td>192</td>
<td>15</td>
<td>352</td>
<td>845</td>
<td>1.1</td>
<td>6.3</td>
</tr>
</tbody>
</table>
Experimental

Materials.—The synthesis of the calixspherands 1–4 has been described elsewhere.\(^1,6\) The radioactive salts \(^{22}\)NaCl (specific activity 644 Ci g\(^{-1}\)) and \(^{86}\)RbCl (specific activity 1.38 Ci g\(^{-1}\)) were obtained from Amersham. Solvents were used without purification or drying. The glassware used was standard laboratory equipment and therefore not ion-free.

Exchange Experiments.—The free ligands of the calixspherands were loaded with \(^{22}\)Na\(^+\) or \(^{86}\)Rb\(^+\) in the following way. The calixspherand (1 mg) was dissolved in acetone (1.6 cm\(^3\)) and an aqueous solution of \(^{22}\)NaCl or \(^{86}\)RbCl (40 × 10\(^{-3}\) cm\(^3\); 1 mCi cm\(^{-3}\)) was added. After half an hour a solution of sodium or rubidium picate in acetone (10 × 10\(^{-3}\) mol dm\(^{-3}\); 0.16 cm\(^3\)) was added. After a further 2 h chloroform (1.6 cm\(^3\)) was added and the organic solution was extracted with water (4 × 1.6 cm\(^3\)) and stored before use.

The ion-exchange experiments were performed as follows: For each experiment 10–14 tubes were filled with 20–30 × 10\(^{-3}\) cm\(^3\) of the solution containing the radioactive calixspherand complex. In this way, each tube contained 6–10 nmol of calixspherand complex and about 5000 counts per min (cpm). The solvent was evaporated off by exposure to air overnight. To every tube were added 100 × 10\(^{-3}\) cm\(^3\) of a 10 mmol dm\(^{-3}\) solution of alkali-metal picate in acetone or Me\(_2\)SO, and the mixture was kept at room temperature. At certain time intervals, chloroform (0.7 cm\(^3\)) and water (0.7 cm\(^3\)) were added and the tube was vortexed for 10 s, followed by centrifugation for 5 min at 2000 rpm. Part of the organic layer (0.5 cm\(^3\)) was then transferred to a second tube, the volume in this tube adjusted with water (0.5 cm\(^3\)) and both tubes counted for 4 min. The exchange was followed for a minimum of 24 h and a maximum of 72 h. The exchange-process was analysed after 10 s, 5, 10, 20, 40, 80, 150, 300 and 450 min, 16 and 24 h, and for the more stable complexes also after 32, 48 and 72 h.

For the calculation of the ratio of complexed and free salt the following assumption was made. All the counts in the organic layer are from the calixspherand cation complex, and all the counts in the water layer are from uncomplexed cations. This number of counts is corrected because only 0.5 cm\(^3\) of the organic layer is transferred to a second tube and counted. When acetone was used as the solvent, the total volume of acetone used is taken up by the chloroform layer, but when Me\(_2\)SO was used as the solvent the total volume of Me\(_2\)SO used is taken up by the water layer. Therefore, the total volume of the organic layer is 0.8 cm\(^3\) for acetone, and 0.7 cm\(^3\) for Me\(_2\)SO, and consequently, the number of counts in the organic layer is multiplied by 8/5, and 7/5, respectively. The percentage of complex radioactive cations (\(^{\ast}\)M\(^+\)) was calculated in the following way.

For acetone: % complexed \(^{\ast}\)M\(^+\) = \[1.6N_{org}(N_{org} + N_{remaining})\] × 100% For Me\(_2\)SO: % complexed \(^{\ast}\)M\(^+\) = \[1.4N_{org}(N_{org} + N_{remaining})\] × 100%

\(N_{org}\) = background-corrected number of counts in 0.5 cm\(^3\) of the organic layer.
\(N_{remaining}\) = background-corrected number of counts in the remaining layer.

The percentages were plotted against time, and the kinetic analysis was performed using a computer program for non-linear curve-fitting, MULTIFIT,\(^8\) using the Marquard algorithm\(^9\) or the simplex algorithm\(^10\) for the minimization of the residual weighted sum of squares.

\(^1\)H NMR Experiments.—Solutions of calixspherand rubidium complex (4 mmol dm\(^{-3}\)) and of sodium picate (20 mmol dm\(^{-3}\)) in Me\(_2\)SO were prepared. Aliquots of each solution (300 × 10\(^{-3}\) cm\(^3\)) were mixed in a NMR tube and equilibrated. \(^1\)H NMR spectra were taken 10, 20, 30, 50, 70, 100, 130, 190, 250, 310, 430, 550 and 670 min after mixing of the solutions. The ratio between the rubidium and the sodium complex was determined by integration of the signals from the methyl group of one of the ethoxy groups and plotted against time.

Experiments with Mass Spectrometry.—\([\text{1-Rb}]^+\) (ca. 70 × 10\(^{-6}\) g) was dissolved in acetone (1 cm\(^3\)) and kept at room temperature for 24 h. Subsequently, 100 × 10\(^{-3}\) cm\(^3\) of the solution was removed and partitioned between CHCl\(_3\) (0.7 cm\(^3\)) and H\(_2\)O (0.7 cm\(^3\)). The CHCl\(_3\) layer was diluted 100-fold and analysed by mass spectrometry. The experiment was repeated, using a solution of rubidium picate in acetone (10 × 10\(^{-3}\) mol dm\(^{-3}\)) instead of acetone.

Acknowledgements

The research described in this paper was supported by the Technology Foundation (STW), Technical Science Branch of the Netherlands Organization for Scientific Research (NWO). We acknowledge the co-workers of the Department of Nuclear Medicine of the Academic Hospital in Groningen for their assistance and hospitality during the measurements with the radioisotopes. Finally we wish to thank Dr. J. P. M. van Duynhoven and J. M. Visser for assistance in recording the NMR spectra and Dr. A. P. Bruins for recording the mass spectra.

References

Received 31st August 1993
Accepted 7th October 1993