Kinetics and morphology of electrochemical vapour deposited thin zirconia/yttria layers on porous substrates

Share/Save/Bookmark

Brinkman, H.W. and Meijerink, J. and Vries, K.J. de and Burggraaf, A.J. (1996) Kinetics and morphology of electrochemical vapour deposited thin zirconia/yttria layers on porous substrates. Journal of the European Ceramic Society, 16 (6). pp. 587-600. ISSN 0955-2219

open access
[img]
Preview
PDF
2MB
Abstract:By means of electrochemical vapour deposition (EVD), it is possible to grow thin (0.5-5 µm), dense zirconia/yttria layers on porous ceramic substrates. Kinetics of the EVD process, morphology and oxygen permeation properties of the grown layers are investigated. Very thin (~ 0.5 µm) layers are grown at relatively low temperatures (700-800 °C). Water vapour as reactant enhances the surface reaction rate at the solid oxide/oxygen source reactant interface. A transition occurs from pore diffusion (above 1000 °C) to bulk electrochemical diffusion (below 900 °C) as rate-limiting step for layer growth. The zirconia/yttria solid solution is mainly deposited in the cubic phase; the layers grow in a typical columnar way and are polycrystalline. Oxygen permeation measurements show that the oxygen permeation flux through the zirconia/yttria layers is influenced by the layer thickness, morphology, presence of water vapour and the oxygen pressure gradient over the layer.
Item Type:Article
Copyright:© 1996 Elsevier Science
Research Group:
Link to this item:http://purl.utwente.nl/publications/12135
Official URL:http://dx.doi.org/10.1016/0955-2219(95)00173-5
Export this item as:BibTeX
EndNote
HTML Citation
Reference Manager

 

Repository Staff Only: item control page

Metis ID: 106511