Plasticity of nanocrystalline zirconia ceramics and composites

Share/Save/Bookmark

Winnubst, A.J.A. and Boutz, M.M.R. and He, Y.J. and Burggraaf, A.J. and Verweij, H. (1997) Plasticity of nanocrystalline zirconia ceramics and composites. Ceramics International, 23 (3). pp. 215-221. ISSN 0272-8842

open access
[img]
Preview
PDF
898kB
Abstract:The deformation strain rate of nanocrystalline Y-TZP shows an increase by a factor 4 if the grain size decreases from 200 to 100 nm. Real superplastic deformation (strain rate > 10−4 s−1) is observed in these materials at relative low temperature (1100–1200 °C). Grain-boundary analysis indicates (partial) removal of an ultra-thin (1 nm), yttrium-rich grain boundary layer after deformation.

Uniaxial pressure-assisted sintering techniques (=sinter-forging) provide the opportunity of large shear strains during densification. Sinter-forging experiments on zirconia-toughened alumina (15 wt% ZrO2/85 wt% Al2O3) resulted in a dense composite within 15 min at 1400 °C and 40 MPa, with effective shear strains up to 100%. Sinter-forging of Y-TZP and ZTA gives an increase in strength, reliability and fracture toughness. These improvements are caused by the large shear strains that result from the removal of processing flaws. Also, the number of microcraks at the grain boundaries and the interatomic spacing between the grains are reduced by the forging techniques, resulting in a strengthening of the grain boundaries if compared with pressureless sintering. K1C values of 10 MPa√m are obtained for Y-TZP, while no classical stress-induced phase transformation toughening is observed. Sinter-forged ZTA samples showed a better wear resistance than free sintered ones.
Item Type:Article
Copyright:© 1997 Elsevier Science
Faculty:
Science and Technology (TNW)
Research Group:
Link to this item:http://purl.utwente.nl/publications/12075
Official URL:http://dx.doi.org/10.1016/S0272-8842(96)00028-4
Export this item as:BibTeX
EndNote
HTML Citation
Reference Manager

 

Repository Staff Only: item control page

Metis ID: 106481