Self-Assembled Monolayers of Carceplexes on Gold

Bart-Hendrik Huisman, Dmitry M. Rudkevich, Frank C. J. M. van Veghel, and David N. Reinholdt*

Laboratory of Organic Chemistry
MESA Research Institute, University of Twente
P. O. Box 217, 7500 AE Enschede, The Netherlands

Received January 2, 1996

Symmetrical carceplexes, hosts with permanently present guests, have been extensively investigated by Cram and others.1 We have recently reported nonsymmetrical carceplexes by combination of functionalized calix[4]arenes and resorcin[4]-arenes that exhibit a novel type of stereoisomerism as the result of two different orientations of the incarcerated guest.2 The energy barrier between the two states depends on the structure of the cavity and of the incarcerated guest.3 Self-assembled monolayers are an attractive platform to order and orient such molecules in two dimensions.5,6 Previously, we have shown that self-assembled layers of molecules in monolayers is a tool to control the orientation of molecular recognition sites.6 Essential in the design of these adsorbates is that the eight alkyl chains fill the space under the recognition site. This is reached via four sulfides and back folding of the alkyl chain.3 Thus, highly-oriented monolayers on gold were obtained with resorcin[4]arene and calix[4]arene derivatives.

Similarly, a modified carcerean might be oriented in space by the controlled assembly on gold. This will orient the carcerean, while the guest remains free to adopt two positions. In principle two different diastereometric surfaces can be formed.

In this communication we report the successful confinement of such a resorcin[4]arene-based carceplex (1-DMF) in a self-assembled monolayer on gold.

The synthesis of 1-DMF (Scheme 1) is based on the coupling of calix[2]arene 2 and resorcinol 3 in McGN at 80 °C in the presence of CaSO4 and KI.11 Subsequent removal of the phthalimido groups with hydrazine hydrate in EtOH, followed by selective acylation of the amino groups with chloroacetyl chloride in CH2Cl2 gave 4 in 22% overall yield. The intramolecular alkylation was achieved quantitatively in DMF at 80 °C in the presence of CaSO4 and KI.12 The resulting DMF carceplex was reacted with 1-decanethiol in the presence of a catalytic amount of 9-borabicyclo[3.3.1]nonane (9-BBN) in THF, giving tetratulfsulfide carceplex 1-DMF in 64% yield.13 The 1H NMR spectrum of 1-DMF in CDCl3 exhibits three singlets of the incarcerated DMF molecule at 8 4.84, 0.66, and -0.90 ppm for C(O)H and the two CH2 groups, respectively. Those signals are shifted upfield by 3.16, 2.25, and 3.69 ppm, respectively, in comparison with the signals of free DMF, which clearly proves that DMF is complexed in the carcerean. Moreover, the presence of DMF was confirmed by MS-FAB (m-nitrobenzyl alcohol as a matrix) showing a distinct peak of carceplex 1-DMF at 2736.9 (calcd 2737.0).

Self-assembled monolayers of carceplex 1-DMF on gold were prepared from a 0.1 mM ethanol solution.14 Since in previous experiments15 the temperature appeared to have great influence on the order in the layer, the adsorption was studied both at room temperature and at 60 °C. The monolayers were characterized by XPS, ellipsometry, electrochemical methods, contact angle measurements, and grazing incidence FTIR.16 XPS data are fully consistent with the proposed structure (Table 1). The measured percentages of the atoms are in good agreement with the calculated numbers. The C 1s peak is broadened up to 287 eV due to the variety of atoms linked to the carbon atoms (like C–N, C–S, and C–C in addition to C–C and C–N). A separate maximum is observed for the carbonyl carbon atoms. The O 2s peak of the carbonyl appears as a shoulder at 532 eV.16 An ellipsomteric thickness of 28 Å was determined, which is in good agreement with what can be expected for these monolayers oriented almost perpendicular to the surface. The advancing contact angle of 89° shows that the surface is hydrophobic, while the receding contact angle (65°) indicates slight disorder. This is expected, as the area per molecule is covered by eight alkyl chains, while only four propyl groups are directed to the outer interface, resulting in a loose packing of the top few anions. In contrast to the resorcin[4]arene monolayers,9 no distinct difference in quality is observed between layers prepared at room temperature or at 60 °C. The same was observed for the calix[4]arene monolayers.10 That overall a well-oriented monolayer is obtained is evident from electrochemical measurements; a high resistance of 25 kΩ was determined with electrochemical impedance spectroscopy. Also the infrared data (Table 2) indicate a high degree of order, as evidenced by the sharpness of the carbonyl and phthalimide vibrations.

(11) Compound 2 was prepared by stepwise selective functionalization of atercaproyloxy-[4]arene via 1,6-nitration, 3,4-lodination, and phtha-
limide insertion at the 3,4-positions, followed by reduction of the nitro groups and subsequent chloroacetylation (five steps). Tetral 3 was synthesized from the corresponding resorcinarene via bromination of both the alicyclic rings and the double bonds, selective debrmination (recovering the double bonds), bridging of the oxet, and bromo-lithium-exchange, followed by quenching with trimethylbor and oxidation with hydrogen peroxide to the tetral (four steps). Details of the synthesis will be published elsewhere.

(12) The general procedure for the preparation of similar carceplexes and their properties have recently been published, see ref 2 and references cited therein.

(13) Selected spectral data for 1-DMF: 1H NMR (CDCl3) 6 7.65 (s, 4 H), 6.92 (s, 8 H), 6.74 (s, 4 H), 5.73, 5.38 (AB, J = 7.0 Hz, 8 H), 4.84 (s, 4 H), 4.81 (s, 8 H), 4.62 (J = 8.0 Hz, 4 H), 4.40, 3.38 (AB, J = 13.0 Hz, 8 H), 3.76 (J = 7.5 Hz, 8 H), 2.45 (J = 7.5 Hz, 16 H), 2.20–2.0 (m, 8 H), 1.9–1.7 (m, 8 H), 1.5–1.1 (m, 12 H), 0.98 (s, J = 8.0 Hz, 12 H), 0.32 (s, J = 7.5 Hz, 12 H), 11.71 ppm, 0.66 (s, J = 6.0 Hz), -0.90 ppm (s, 6 DH). MS-FAB mass 537.9 [M + DMF]2–, calcd for C24H36N3O3S4Na2, 2370.0; 2586.5 [M + DMF +
(CH3)2SO + Na]2–, calcd 2587.0.

(14) Identical substrates and conditions were applied as described before in ref 9.

(15) Experimental details of the analytical techniques were described in ref 9 (electrochemical analysis, contact angle measurements) and ref 10 (IR). Ellipsometry was performed on a Plasmatec Ellipsometer (3 ± 2 mm) assuming a reflective index of 1.50 for the monolayer. For XPS an Escalab 220 XL was used with an Al Kα monochromatized source.


(17) Resistances of ~5 kΩ were determined for disordered monolayers, while the resistance of highly-ordered layers is on average 300 kΩ and incidentally up to 800 kΩ (unpublished results).

100027863/6/1518-352312.00/0 © 1996 American Chemical Society
Scheme 1

(a) CaCO₃, KI, 80 °C, MeCN, high dilution; (b) NH₄H₂O, DIPE (c) CH₂Cl₂, 25 °C, CH₂Cl₂

(d) CaCO₃, KI, 80 °C, DMF, high dilution; (e) CH₂(CH₂)₆CH₂, 9-Br-PPN, TFH.

Table 1. XPS Data for Carboxplex 1·DMF Monolayer

<table>
<thead>
<tr>
<th>peak</th>
<th>center [eV]</th>
<th>measured</th>
<th>calc.</th>
</tr>
</thead>
<tbody>
<tr>
<td>O 1s</td>
<td>533.2</td>
<td>11.4</td>
<td>10.9</td>
</tr>
<tr>
<td>N 1s</td>
<td>403.3</td>
<td>2.2</td>
<td>2.6</td>
</tr>
<tr>
<td>C 1s</td>
<td>284.7</td>
<td>84.8</td>
<td>84.5</td>
</tr>
<tr>
<td>S 2p</td>
<td>161.9</td>
<td>1.5</td>
<td>2.1</td>
</tr>
</tbody>
</table>

Table 2. Selected Infrared Peak Positions [cm⁻¹] for Carboxplex 1·DMF in the Bulk and the Monolayer

<table>
<thead>
<tr>
<th>vibration</th>
<th>bulk</th>
<th>monolayer</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH₃ symmetric</td>
<td>2853</td>
<td>2853</td>
</tr>
<tr>
<td>CH₂ symmetric</td>
<td>2924</td>
<td>2926</td>
</tr>
<tr>
<td>amide-I</td>
<td>1696</td>
<td>not seen</td>
</tr>
<tr>
<td>amide-II</td>
<td>1526</td>
<td>1537</td>
</tr>
</tbody>
</table>

Figure 2. Schematic representation of carboxplex 1·DMF monolayer on gold.

as the maxima of the methylene C-H stretching modes in the monolayer are very similar to the bulk maxima. The infrared spectra further provide information about the orientation of the carboxplex 1·DMF on the monolayer. As presented in Figure 1 and Table 2, the amides in the carboxplex clearly appear in the infrared bulk spectrum as both amide-I (predominantly C=O stretch) and amide-II bands (mainly C-N stretch and N-H bending). In the monolayer spectrum, however, only an amide-I band appears at 1537 cm⁻¹, while amide-II is very weak or absent. This implies that the orientation of the transition dipole of the amide-I band is perpendicular to the p-polarization of the infrared beam, i.e. the carbonyl bonds are approximately parallel to the gold surface. This proves that the orientation of the carboxplex 1·DMF is perpendicular as schematically depicted in Figure 2.

In conclusion, asymmetric carboxplexes can be ordered and positioned by means of self-assembly on gold. The high molecular order and the 2D confinement provide in principle the possibility of switching the incarcerated guests without affecting the orientation of the host. Currently, the possibilities to influence the orientation of the guest (and other guests) and switching this orientation are under investigation.

Acknowledgment. We thank Dr. P. J. de Lange (AKZO-Nobel Central Research) for XPS measurements, Dr. R. P. H. Kooyman (University Twente) for assistance with the infrared measurements, and Dr. L. G. J. Folkerts (Philips Research Laboratories) for providing equipment for contact angle measurements.

JA960031N