FTIR and XPS studies on corrosion resistant SiO2 coatings as a function of the humidity during deposition


Hofman, R. and Westheim, J.G.F. and Pouwel, J. and Fransen, T. and Gellings, P.J. (1996) FTIR and XPS studies on corrosion resistant SiO2 coatings as a function of the humidity during deposition. Surface and Interface Analysis, 24 (1). pp. 1-6. ISSN 0142-2421

open access
Abstract:The degradation of SiO2 coatings deposited on alloys by metal organic chemical vapour deposition (MOCVD) in sulphidizing high-temperature environments is determined by delamination and crack formation. With increasing water concentration during deposition, the crack density in silica decreases and the critical thickness for delamination of SiO2 coatings increases. This improvement is supposed to be caused by compositional changes in the SiO2 coating. In this study presence of water and silanol groups as measured by Fourier transform infrared spectroscopy(FTIR) and the Si:O ratio as measured by XPS are discussed in relation to the protective properties. The FTIRmeasurements show that the coatings deposited in more humid environments contain more silanol groups and have lower stress levels. The coatings obtained under all deposition conditions consisted of stoichiometric SiO2.0 as determined by XPS. The presence of silanol groups reduces the viscosity of the coating, and stress relaxation by viscous flow becomes enhanced, thereby improving the coating performance.
Item Type:Article
Copyright:© 1996 John Wiley & Sons, Inc
Research Group:
Link to this item:http://purl.utwente.nl/publications/10406
Official URL:https://doi.org/10.1002/(SICI)1096-9918(199601)24:1<1::AID-SIA73>3.0.CO;2-I
Export this item as:BibTeX
HTML Citation
Reference Manager


Repository Staff Only: item control page

Metis ID: 105647