
Twente Univ., Enschede (Netherlands). Faculty of Educational Science and Technology.

RR-02-05

2002-00-00

30p.

Faculty of Educational Science and Technology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands. E-mail: Fox@edte.utwente.nl.

Reports - Research (143)

EDRS Price MF01/PC02 Plus Postage.

*Adaptive Testing; Computer Assisted Testing; *Item Banks; Test Construction; *Test Items

*Constraints; Item Exposure (Tests)

Preventing items in adaptive testing from being over- or underexposed is one of the main problems in computerized adaptive testing. Though the problem of overexposed items can be solved using a probabilistic item-exposure control method, such methods are unable to deal with the problem of underexposed items. Using a system of rotating item pools, on the other hand, is a method that potentially solves both problems. In this method, a master pool is divided into (possibly overlapping) smaller item pools that are required to have similar distributions of content and statistical attributes. These pools are rotated among the testing sites to realize desirable exposure rates for the items. In this paper, a test assembly model for the problem of dividing a master pool into a set of smaller pools is presented. The model was motivated by Gullicksen's (1950) matched random subtests method. Different methods to solve the model are proposed. An item pool from the Law School Admission Test was used to evaluate the performances of computerized adaptive tests from systems of rotating item pools constructed using these methods. (Contains 6 figures and 14 references.) (Author/SLD)
Constructing Rotating Item Pools for Constrained Adaptive Testing

Adelaide Ariel
Bernard P. Veldkamp
Wim J. van der Linden

faculty of
EDUCATIONAL SCIENCE AND TECHNOLOGY

Department of Educational Measurement and Data Analysis

BEST COPY AVAILABLE
Constructing Rotating Item Pools for Constrained Adaptive Testing

Adelaide Ariel
Bernard P. Veldkamp
Wim J. van der Linden
Abstract

Preventing items in adaptive testing from being over- or underexposed is one of the main problems in computerized adaptive testing. Though the problem of overexposed items can be solved using a probabilistic item-exposure control method, such methods are unable to deal with the problem of underexposed items. Using a system of rotating item pools, on the other hand, is a method that potentially solves both problems. In this method, a master pool is divided into (possibly overlapping) smaller item pools which are required to have similar distributions of content and statistical attributes. These pools are rotated among the testing sites to realize desirable exposure rates for the items. In this paper, a test assembly model for the problem of dividing a master pool into a set of smaller pools is presented. The model was motivated by Gulliksen's (1950) matched random subtests method. Different methods to solve the model are proposed. An item pool from the Law School Admission Test (LSAT) was used to evaluate the performances of computerized adaptive test from systems of rotating item pools constructed using these methods.

Key words: computerized adaptive testing; item pool design; matched random subtests method; mathematical programming; rotating item pools; test assembly.
Methods for Constructing Item Pools - 2

Introduction

In paper-and-pencil (P&P) testing, the same set of items is administered to a population of examinees. A disadvantage of this testing format is its inability to deal with a broad range of abilities in the population. This disadvantage is remedied by computerized adaptive testing (CAT) where each examinee takes a test with items selected to match their ability estimates during the test. In doing so, CAT emulates an important aspect of oral examination, namely the practice of an examiner who chooses a more difficult question if the examinee responds correctly and an easier question if (s)he responds incorrectly. A CAT algorithm implement this practice by updating the examinee's ability estimate, \(\hat{\theta} \), and choosing the next item to be optimal at this estimate.

Maximum-information and Bayesian item selection are commonly used criteria to select item (Hambleton, Swaminathan, & Rogers, 1991; van der Linden & Pashley, 2000). When an item is selected to maximize information at the current ability estimate, the algorithm prefers items for which both the difference between the current ability estimate \(\hat{\theta} \) and the item difficulty parameter \(b_i \) is small and the item discrimination parameter \(a_i \) is high (Van der Linden & Berger, 1999). As a result, for a population of examinees, a relatively small number of items will be selected and the high exposure rate of these items makes them vulnerable to security breaches. Typically, the other items are hardly selected at all and the resources invested in writing and calibrating them have futile effect (Veldkamp, 2001).

Various methods have been proposed to solve this problem, including methods of item-exposure rate control, item pool design, and rotating item pools. Sympson and Hetter (1985) introduced a probabilistic approach to control the exposure rate of every item in the pool (for a review of this method, see van der Linden, in press). McBride et al. (1997) advocated an algorithm that reduced the exposure rates of items most popular at the beginning of the test. Veldkamp and van der Linden (2000) suggested to calculate a blueprint for the item pool such that distribution of the exposure rates for the items in the pool tends to be even. Stocking and Swanson (1998) introduced a method of rotating item pools with the same goal of even exposure rates. The item pools in this method are
assembled from a master pool by splitting it into several smaller pools. The item pools are randomly rotated during operational testing. The goal of more uniformly distributed item-exposure rates is realized by assigning items with higher exposure rates to a smaller number of pools and items with lower rates to a larger number of pools.

In this paper, we focus on the problem of constructing a system of rotating item pools from a given master pool. Several methods to construct such systems are presented. All methods are based on a two-stage assignment process, in which items are first assigned to interim sets of (closely) parallel items and then from these sets to item pools. This process is optimized using the idea underlying the matched random subtests method introduced by Gulliksen (1950) to split a test into parallel subtests to the largest possible split-half reliability, which is always a lower bound to classical test reliability. To illustrate how to put our methods into practice, several examples using an item pool from the Law School Admission Test (LSAT) are given. A constrained CAT algorithm was applied to evaluate the performance of the systems of rotating item pools constructed by these methods.

Rotating Item Pools

Way (1998) observes that probabilistic item-exposure control may be inadequate to guarantee a secure CAT program. His suggestion is that a system of rotating item pools may be a more promising approach to prevent item compromise. Way, Steffen, and Anderson (1998) discuss several examples of strategies of managing rotating item pools and using such systems to enhance the security of the computerized testing.

For systems of rotating item pools to be effective, the availability of automated item-selection procedures to assemble such pools from a master pool is crucial. These procedures should guarantee the following outcomes: First, each pool should have similar distributions of content and statistical attributes to guarantee uniform measurement quality to examinees. Second, the composition of the pools should guarantee uniform usage of the items. Third, the pool should have enough items to allow item selection for the adaptive tests to be constrained with respect to all the specifications to be imposed on the test.
Stocking and Swanson (1998) demonstrate a method to construct rotating item pools. In their method, the items in the master pool are assigned to pools by their weighted deviations model (WDM). The first step in this method is to calculate an average (nonoverlapping) pool from the master pool. The actual pools are then assembled to minimize the differences between these pools and the average pools with respect to (1) the item attributes in the constraints to be imposed on the CAT and (2) item information at selected θ levels. In doing so, the deviations are weighed to get a single objective function. The resulting pools are expected to have similar distributions of content and statistical attributes and, hence, to support each test administration equally well.

Two versions of the Stocking-Swanson method exists, one with nonoverlapping and another with overlapping item pools. The former was presented above. However, to get more uniformly distributed exposure rates, a system of overlapping item pools is more efficient. This system allows us to reduce the exposure rate of more popular items by assigning them to a smaller set of pools and to increase the usage of less popular items by assigning them to a larger set. Overlapping pools are assembled by first calculating the required numbers of pools the items should figure in and then assigning the items to the pools until these numbers are realized. For empirical results with these methods, see Stocking and Swanson (1998).

New Methods for Constructing Rotating Item Pools

The methods are all based on techniques of constrained combinatorial optimization. The objective functions in the optimization problems focus on the values of the item parameters in the pools. The goal is to give the pools identical distributions of parameters. At the same time, constraints are introduced to match the pools in terms of content attributes and to control the overlap between the pools.

The method is motivated by Gulliksen’s (1950) matched random subtests method. Gulliksen’s method was proposed to split a test into two halves that are statistically as closely parallel as possible. The split-half reliability calculated from these halves is a lower bound to the classical test reliability. Gulliksen’s method has two stages. In
the first stage, the items are assigned to pair of items that have minimal differences between their parameter values. In the second stage the items are assigned to test halves. A formalization of Gulliksen's method as a problem of constrained combinatorial optimization is given in van der Linden and Boekkooi-Timminga (1988). The methods proposed in this paper generalize the formalization to the problem of splitting a master pool into item pools for CAT with rotating pools.

Stage 1: Assigning Items to Interim Sets

In the first stage, the items in the master pool are assigned to interim sets. For notational simplicity, we formulate the optimization problem for interim sets consisting of two items. Generalization to larger interim sets is straightforward.

A metric δ_{ij} is used to represent the differences between items in interim sets. If the goal is to minimizing the differences between the values of the items for the a_i and b_i parameters in the sets, a possible metric for these differences is

$$\delta_{ij} = |a_i - a_j| + w |b_i - b_j|, \quad (1)$$

where w is a parameter that can be used to correct for differences between the scales of the two parameters. Other types of metric and larger numbers of item parameters are possible.

The problem of assigning items to interim sets can be formulated as a 0-1 mathematical programming problem with decision variables, x_{ij}, $i \neq j = 1, \ldots, I$, which are equal to 1 if item i and j are chosen in the same set and are equal to 0 otherwise, where I represents the number of items in the master pool. The objective function is

$$\min \sum_{i=1}^{I} \sum_{j=i+1}^{I} \delta_{ij} x_{ij} \quad (2)$$

subject to

$$\sum_{i<j} x_{ij} + \sum_{i>j} x_{ji} = 1, \forall j. \quad (3)$$
The constraint in (3) is to guarantee that every item is assigned to an interim set only once (van der Linden and Boekkooi-Timminga, 1988).

Stage 2: Assigning Items to Pools

In the second stage, the items in the interim sets are assigned to the item pools. Different assignment models for the assignment of items to nonoverlapping and overlapping pools are formulated.

Nonoverlapping Pools

The general idea in generating the item pools is to make them as similar as possible. In the mathematical programming model below, the objective function minimizes the differences between the total information in the pools at several ability values, while constraints are introduced to assign every item exactly once.

The model can be formulated as

\[
\text{min } z
\]

subject to

\[
\sum_{i \neq j} I_i(\theta_k)y_{is} - \sum_{i \neq j} I_j(\theta_k)y_{jp} \leq z, \forall \theta_k, s, p, s \neq p
\]

\[
\sum_{i \neq j} I_i(\theta_k)y_{is} - \sum_{i \neq j} I_j(\theta_k)y_{jp} \geq -z, \forall \theta_k, s, p, s \neq p
\]

\[
\sum_{i \in Q_r} y_{is} = 1, \forall s
\]

\[
\sum_{s} y_{is} = 1, \forall i
\]
where i and j are indices for the items, Q_r is the rth interim set, s and p indicate item pools, θ_k is ability level k, $I_i(\theta_k)$ is the information about θ_k in item i, and y_{is} is a decision variable that is equal to one if item i is assigned to pool s and equal to zero otherwise.

In (5)-(6), the difference between the total information in the item pools at the ability values θ_k are constrained to be in the interval $(-z, z)$. The size of this interval is minimized in (4). The constraints in (7) require items in the same interim set to be assigned to different pools. The constraints in (8) guarantee that all items are assigned once, whereas the constraints in (9) define the decision variables to be 0-1.

Overlapping Pools.

Overlapping item pools are obtained by changing the constraint on number of times an item is assigned to a pool in (8). This constraint is then replaced by

$$\sum_{s} y_{is} \leq n^{(r)}, \forall i$$

$$\sum_{s} y_{is} \geq n_r, \forall i$$

with $n^{(r)}$ and n_r denoting the maximum and minimum number of item replications admitted. Unpopular items should have larger values $n^{(r)}$ and n_r and popular items should have lower values.

Whether or not an item is popular is usually known only after conducting a CAT simulation. Based on items performance in the CAT algorithm, we then can decide what values $n^{(r)}$ and n_r should have. However, we can also decide on these values using the values of the items for the discrimination parameter (see empirical examples below).
Additional Content Constraints

The model described above does not yet allow for possible additional content constraints on the CAT. Suppose, for example, that the CAT has to be constrained with respect to item type and word counts. In order to ensure that the pools have comparable distributions of these item attributes, the following constraints should be added to the model:

\[
\sum_{i \in V_m} y_{is} \geq n_m, \forall s
\] \hspace{1cm} (12)

\[
\sum_{i \in V_m} y_{is} \leq n^{(m)}, \forall s
\] \hspace{1cm} (13a)

\[
\sum_{i} w_i y_{is} \geq n_w, \forall s
\] \hspace{1cm} (14)

\[
\sum_{i} w_i y_{is} \leq n^{(w)}, \forall s
\] \hspace{1cm} (15)

where \(V_m\) is the set of items of type \(m\) in the master pool, \(w_i\) is the word count of item \(i\), \(n_m\) and \(n_w\) are the lower bounds on the number of items of type \(m\) and the word count in the test, and \(n^{(m)}\) and \(n^{(w)}\) are the upper bounds on these attributes.

Algorithms for Solving the Models

Various algorithms for solving the previous two types of models are presented. We first discuss the methods for assigning items to interim sets.
Assigning Items to Interim Sets

For a system with nonoverlapping pools, the number of parallel items in every interim set is equal to the number of pools to be created. A heuristic and an exact method for assigning items to interim sets are introduced.

Sequential assignment

A simple method would be using a greedy heuristic. This heuristic has been applied to test assembly problems in combination with the Weighted Deviation Model (Stocking & Swanson, 1993) and in combination with the Normalized Weighted Absolute Deviation Heuristic (Luecht, 1998). When this heuristic is applied to solve the model, interim sets are constructed sequentially until all sets are assembled. The method does have some drawbacks, though, because each subsequent solution will tend to have a larger value for the objective function. Therefore a second method is proposed that is based on assembling all interim sets simultaneously.

Simultaneous assignment

An exact (simultaneous) solution for all sets is hard to obtain if the number of sets is large. Because this condition was met in the empirical example below, we used another heuristic approach, namely simulated annealing. This heuristic approximates an optimal simultaneous solution in an iterative process. The general principle on which the heuristic is based is that at each step a new solution is generated by inspecting a "neighborhood" of the old solution and it is then decided whether this new solution should or should not be accepted. Another feature of simulated annealing is that it accepts a worse solution with a nonzero probability. Typically, the probability becomes smaller after some iterations. This feature is an advantage because it allows the algorithm to backtrack if it would get stuck in a bad path. Examples of an application of this heuristic to test assembly are given in Veldkamp (1999). A more theoretical explanation of simulated annealing can be found, for example, in van Laarhoven and Aarts (1987).

A simple but effective implementation of the method of simulated annealing to the current problem is to generate new interim sets from randomly selected old sets. For this
purpose we have to construct initial sets first. Because the number of parallel items in every set is based on the number of pools, there will be some items left if the total number of items in the master pool is not a multiplicity of the number of pools. To handle this problem a dummy interim set was created to which the remaining items were assigned.

New sets are then constructed by randomly swapping items between sets. The metric in (2) is used to evaluate new sets against old sets. If a new value for the objective function is smaller, the new sets is accepted with certainty; otherwise a probability procedure is conducted to determine whether or not the new set should be accepted. If a new set is not accepted, a next generation of interim sets are obtained from previously accepted sets.

Assigning Items to Pools

Two methods for assignment of items from interim sets to item pools are discussed.

Random Assignment Method

Because in the first stage of the method the interim sets are constructed to be as similar as possible, it may be possible to assign items in the same interim set randomly to item pools. If items in all interim sets are assigned, we may still have a dummy set that had to be created because the number of items in the master pool was not a multiplicity of the number of pools. The items in this set can also be assigned randomly. However, in the empirical example below, the information functions for each pool was calculated and the items were assigned to the pools with the smallest values for these functions.

Mathematical Programming

A more precise method is to solve the model in (4) until (9) and the additional constraints in (12) and (14) using a mathematical programming algorithm. In the empirical study below we used one of the standard algorithms in the mathematical programming software packages AIMMS (2001). This method is to be preferred if the differences between the items in the interim sets happens to be larger than anticipated.
Methods for Constructing Item Pools - 11

Defining the Number of Overlapping Pools an Item Should Be Assigned to.

If overlapping pools are to be constructed, the bounds on the number of times an item can be assigned, $n^{(r)}$ and n_r, have to be specified for each item. The choice of these numbers can either be based on the values of the item parameters or on the actual exposure rates of the items. The first method is based on the discrimination parameter of the items. Since items with higher a_i values have a larger chance of being selected, such items should be given low values for $n^{(r)}$ and n_r. On the other hand, items with low a_i have a low probability of being selected and should be given higher values for $n^{(r)}$ and n_r. The second method is based on the actual exposure rates of the items. Items with high exposure rates are given low values for both $n^{(r)}$ and n_r, while items with low exposure rates are given high values.

Empirical Example

A previous pool of 2,131 items from the LSAT fitting the 3-parameter logistic model (Hambleton, Swaminathan & Rogers, 1991) was used as the master pool. Figure 1 shows the distribution of the values for the a_i and b_i parameters for the items in the pool. We ignored the c_i parameter because its variability was small and this parameter typically does hardly have any impact on the composition of the item pools. The items in the master pool were of nine different types. In addition, word counts of the items were available.

Insert Figure 1 about here

Four different nonoverlapping pools were assembled from the master pool. In addition, two different systems of overlapping pools were assembled, one with six and the other with eight different pools. The last two numbers are in agreement with Stocking’s (1994) recommendation that the size of a CAT item pool size be close to 12 times the length of the adaptive test (which was 24 items in our study). The number of nonoverlapping pools was smaller due to a lack of certain types of items in the master pool.
All item pools in this study were assembled using an objective function based on the metric in (1), with \(w = 1 \). All results were evaluated through a CAT simulation study. The CAT algorithm in these studies was based on a constrained CAT with shadow tests approach (van der Linden, 2000). The shadow tests were calculated using the AIMMS (2001) optimization software package. Test length was fixed at 24 items and the values of the examinees for the ability parameter were randomly drawn from the standard normal distribution. Abilities were estimated by the method of maximum likelihood estimation (MLE). As long as the simulated responses for an examinee were all correct or all incorrect, the ability estimate for the examinee was set equal to 3 and -3, respectively. In each condition, 1,000 examinees were simulated and ability estimation was always initialized at \(\hat{\theta} = 0 \).

To evaluate the performances of the methods, the exposure rates of the items and the bias and mean squared error (MSE) functions for the ability estimators were calculated. No method of probabilistic item exposure control was used; the effects of such methods would have confounded the evaluation of impact of the pool assembly methods on the exposure rates of the items.

Nonoverlapping Item Pools

The performances of all four possible combinations of the methods of sequential and simultaneous assignment of items to interim sets and random assignment and mathematical programming were compared. In addition, CAT administrations directly from the master pool were simulated. The results for CAT from the master pool served as a point of reference for our evaluation of the results in the other four conditions. In the mathematical programming method, item information was controlled at \(\theta_k = -1, 0, \) and 1.

Figure 2 shows the item exposure rates for CAT from item pools assembled by the four combinations of methods as well as from the master pool. The rates of only 600 of
the items are given; the rates of all other items were equal to zero. The highest exposure rate for an item in CAT from nonoverlapping pools was less than 0.3. However, for CAT from the master pool the highest rate was equal to 1.0. Figure 2 also reveals that the number of item with nonzero rates is larger for CAT from nonoverlapping pools. These results show that, compared with CAT from the master pool, CAT from nonoverlapping pools improved the exposure rates of the items equally well for all four methods used to construct these pools.

Figure 3 summarizes the errors in the ability estimates for all five conditions. Both the bias and the MSE functions are lower for CAT from the master pool than from nonoverlapping pools. The reason is the fact that during CAT from the master pool all items were available for selection for each of the examinees where with CAT from the nonoverlapping pools each item had to selected from a smaller set. For all practical purposes, the differences are small though. The differences between the functions for the four conditions with rotating item pools were also negligible.

Insert Figure 3 about here

Overlapping Item Pools

The same four methods were used to assemble a system of rotating overlapping item pools. Since no large differences in performance between the methods for assembling nonoverlapping item pools were found in the previous study, only one of them was used in the present study, namely the method of simultaneous construction of interim sets and assignment of items to pools by mathematical programming.

The only difference with the previous study with nonoverlapping item pools lies in the number of interim sets an item can be assigned to. These numbers are controlled by upper and lower bounds $n^{(r)}$ and n_r in (10)-(11). Earlier, two methods for specifying how often an item should be assigned were introduced. For both methods six and eight overlapping item pools were created from the master pool.
The first method to specify the upper and lower bounds on the item overlap between pools was based on the values of the items in the master pool for the discrimination parameter. These values were in the interval [0.2,1.7]. This interval was divided into equally wide intervals, one for each of the overlapping pools to be assembled. Items with a value for the a_i parameter in the highest interval were assigned only once, items in the second interval twice, etc.

The second method was based on the empirical exposure rates of the items. Using the exposure rates in the first study, the items were divided into two sets. The criterion was an exposure rate below or above 0.5. The items with larger exposure rates were assigned only once, the items with smaller rates were assigned to all item pools.

The estimated exposure rates and bias and MSE functions for both methods are given in Figure 4-6, respectively. In Figure 4 only items with nonzero exposure rates are displayed. The rates were slightly more favorable than in Figure 2 but showed the same pattern. Also, both for the case of six and eight overlapping pools, the method for setting the bounds $n_{(r)}$ and n_r based on empirical exposure rates outperformed the method based on the a_i parameter. Also, the differences between the two methods were larger for the case of eight than six pools. However, as Figures 5 and 6 shown, these more favorable exposure rates were obtained at the costs of slightly higher bias and MSE.

The differences in results between the methods for setting bounds on item overlap follow directly from the criterion on which they were based. In the method based on empirical exposure rates, every pool contains limited number of good items because these items are assigned to only one pool. As a result, that CAT algorithm is forced to choose considerable numbers of worse items and the errors in the ability estimates increase. For the method based on a_i values, the items in the highest category are the only ones assigned only once. Because the item pools have larger numbers of good items, the estimation errors are smaller but the worse items remain hardly used at all.
Methods for Constructing Item Pools - 15

Discussion

The methods for constructing item pools presented in this paper are intended to optimize or to maximize the use of test items in CAT. It was shown that CAT from rotating item pools that do not overlap can improve the usage of items. As shown in Figure 2, the item exposure rates for CAT from nonoverlapping item pools were substantially better than for CAT directly from the master pool. The differences found between the exposure rates and statistical quality of the ability estimates of the four combinations of methods used to assemble these pools were generally negligible, though. This finding seems to suggest that best strategy in real-life applications is to choose a method from these four that is easy to implement under local constraints.

Though the use of nonoverlapping item pools did not dramatically increase the exposure rates of the less frequently items, the use of overlapping pools was more successful in this respect. Especially the results obtained when the method for setting the bounds \(n(r) \) and \(n_r \) was based on empirical exposure rate were promising. Key to these results seems to be the fact that larger numbers of popular items were not allowed to be assigned to more than one pool. As a result, the CAT algorithm was forced to select larger numbers of less popular items, which thus obtained larger exposure rates.

The experimental results also showed that improving the exposure rates of the items tends to results in larger errors for the ability estimates. This trade-off should not come as a surprise: More uniform item exposure rates can only be obtained by imposing more severe constraints on the item selection. These constraints result in a lower value for the objective function optimized during item selection, that is, in less information about the examinees' abilities in the test. However, it is the opinion of the authors that the size of the increase of these errors in the present studies was still acceptably low and could easily have been compensated for by a small increase in the length of the test.
References

List of Figures

Figure 1. Scatter plots of item parameters a and b.
Figure 2. Item-exposure rates for CAT from master pool and nonoverlapping pools.
Figure 3. Bias and MSE functions for CAT from master pool and nonoverlapping pools.
Figure 4. Items-exposure rates for CAT from master pool and overlapping pools.
Figure 5. Bias functions for CAT from master pool and overlapping pools.
Figure 6. MSE functions for CAT from master pool and overlapping pools.
(a) 6 Overlapping Pools

Based on Discrn. Value
Based on Exposure Rate
Master Pool

(b) 8 Overlapping Pools

Item Exposure Rate
Item Number
1. Overlapping Pools

(a) 6 Overlapping Pools

(b) 8 Overlapping Pools

BIAS

Based on Discrim. Value
Based on Exposure Rate
Master pool

Theta

-2 -1 0 1 2

-2 -1 0 1 2
(a) 6 Overlapping Pools

MSE

Theta

Based on Discrm. Value
Based on Exposure Rate
Master pool

(b) 8 Overlapping Pools
Titles of Recent Research Reports from the Department of Educational Measurement and Data Analysis.
University of Twente, Enschede, The Netherlands.

RR-02-05 A. Ariel, B.P. Veldkamp & W.J. van der Linden, *Constructing Rotating Item Pools for Constrained Adaptive Testing*

RR-02-04 W.J. van der Linden & L.S. Sotaridona, *A Statistical Test for Detecting Answer Copying on Multiple-Choice Tests*

RR-02-03 W.J. van der Linden, *Estimating Equating Error in Observed-Score Equating*

RR-02-02 W.J. van der Linden, *Some Alternatives to Symposion-Hetter Item-Exposure Control in Computerized Adaptive Testing*

RR-02-01 W.J. van der Linden, H.J. Vos, & L. Chang, *Detecting Intrajudge Inconsistency in Standard Setting using Test Items with a Selected-Response Format*

RR-01-11 C.A.W. Glas & W.J. van der Linden, *Modeling Variability in Item Parameters in Item Response Models*

RR-01-10 C.A.W. Glas & W.J. van der Linden, *Computerized Adaptive Testing with Item Clones*

RR-01-09 C.A.W. Glas & R.R. Meijer, *A Bayesian Approach to Person Fit Analysis in Item Response Theory Models*

RR-01-08 W.J. van der Linden, *Computerized Test Construction*

RR-01-07 R.R. Meijer & L.S. Sotaridona, *Two New Statistics to Detect Answer Copying*

RR-01-06 R.R. Meijer & L.S. Sotaridona, *Statistical Properties of the K-index for Detecting Answer Copying*

RR-01-03 R.R. Meijer, *Outlier Detection in High-Stakes Certification Testing*

RR-01-02 R.R. Meijer, *Diagnosing Item Score Patterns using IRT Based Person-Fit Statistics*

RR-01-01 H. Chang & W.J. van der Linden, *Implementing Content Constraints in Alpha-Stratified Adaptive Testing Using a Shadow Test Approach*

RR-00-11 B.P. Veldkamp & W.J. van der Linden, *Multidimensional Adaptive Testing with Constraints on Test Content*
<table>
<thead>
<tr>
<th>Research Report</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>RR-00-10</td>
<td>W.J. van der Linden, A Test-Theoretic Approach to Observed-Score Equating</td>
</tr>
<tr>
<td>RR-00-09</td>
<td>W.J. van der Linden & E.M.L.A. van Krimpen-Stoop, Using Response Times to Detect Aberrant Responses in Computerized Adaptive Testing</td>
</tr>
<tr>
<td>RR-00-08</td>
<td>L. Chang & W.J. van der Linden & H.J. Vos, A New Test-Centered Standard-Setting Method Based on Interdependent Evaluation of Item Alternatives</td>
</tr>
<tr>
<td>RR-00-07</td>
<td>W.J. van der Linden, Optimal Stratification of Item Pools in a-Stratified Computerized Adaptive Testing</td>
</tr>
<tr>
<td>RR-00-06</td>
<td>C.A.W. Glas & H.J. Vos, Adaptive Mastery Testing Using a Multidimensional IRT Model and Bayesian Sequential Decision Theory</td>
</tr>
<tr>
<td>RR-00-05</td>
<td>B.P. Veldkamp, Modifications of the Branch-and-Bound Algorithm for Application in Constrained Adaptive Testing</td>
</tr>
<tr>
<td>RR-00-04</td>
<td>B.P. Veldkamp, Constrained Multidimensional Test Assembly</td>
</tr>
<tr>
<td>RR-00-03</td>
<td>J.P. Fox & C.A.W. Glas, Bayesian Modeling of Measurement Error in Predictor Variables using Item Response Theory</td>
</tr>
<tr>
<td>RR-00-02</td>
<td>J.P. Fox, Stochastic EM for Estimating the Parameters of a Multilevel IRT Model</td>
</tr>
<tr>
<td>RR-99-08</td>
<td>W.J. van der Linden & J.E. Carlson, Calculating Balanced Incomplete Block Designs for Educational Assessments</td>
</tr>
<tr>
<td>RR-99-07</td>
<td>N.D. Verhelst & F. Kaftandjieva, A Rational Method to Determine Cutoff Scores</td>
</tr>
<tr>
<td>RR-99-06</td>
<td>G. van Engelenburg, Statistical Analysis for the Solomon Four-Group Design</td>
</tr>
<tr>
<td>RR-99-03</td>
<td>B.P. Veldkamp & W.J. van der Linden, Designing Item Pools for Computerized Adaptive Testing</td>
</tr>
<tr>
<td>RR-99-02</td>
<td>W.J. van der Linden, Adaptive Testing with Equated Number-Correct Scoring</td>
</tr>
</tbody>
</table>

Research Reports can be obtained at costs, Faculty of Educational Science and Technology, University of Twente, TO/OMD, P.O. Box 217, 7500 AE Enschede, The Netherlands.
NOTICE

Reproduction Basis

This document is covered by a signed "Reproduction Release (Blanket)" form (on file within the ERIC system), encompassing all or classes of documents from its source organization and, therefore, does not require a "Specific Document" Release form.

This document is Federally-funded, or carries its own permission to reproduce, or is otherwise in the public domain and, therefore, may be reproduced by ERIC without a signed Reproduction Release form (either "Specific Document" or "Blanket").

EFF-089 (3/2000)