Microfluidics for Medical Applications

Edited by Albert van den Berg and Loes Segerink
Microfluidics for Medical Applications
RSC Nanoscience & Nanotechnology

Editor-in-Chief:
Paul O’Brien FRS, University of Manchester, UK

Series Editors:
Ralph Nuzzo, University of Illinois at Urbana-Champaign, USA
Joao Rocha, University of Aveiro, Portugal
Xiaogang Liu, National University of Singapore, Singapore

Honorary Series Editor:
Sir Harry Kroto FRS, University of Sussex, UK

Titles in the Series:
1: Nanotubes and Nanowires
2: Fullerenes: Principles and Applications
3: Nanocharacterisation
4: Atom Resolved Surface Reactions: Nanocatalysis
5: Biomimetic Nanoceramics in Clinical Use: From Materials to Applications
6: Nanofluidics: Nanoscience and Nanotechnology
7: Bionanodesign: Following Nature’s Touch
8: Nano-Society: Pushing the Boundaries of Technology
9: Polymer-based Nanostructures: Medical Applications
10: Metallic and Molecular Interactions in Nanometer Layers, Pores and Particles: New Findings at the Yoctolitre Level
12: Titanate and Titania Nanotubes: Synthesis, Properties and Applications
13: Raman Spectroscopy, Fullerenes and Nanotechnology
14: Nanotechnologies in Food
15: Unravelling Single Cell Genomics: Micro and Nanotools
16: Polymer Nanocomposites by Emulsion and Suspension
17: Phage Nanobiotechnology
18: Nanotubes and Nanowires: 2nd Edition
19: Nanostructured Catalysts: Transition Metal Oxides
21: Biological Interactions with Surface Charge Biomaterials
22: Nanoporous Gold: From an Ancient Technology to a High-Tech Material
23: Nanoparticles in Anti-Microbial Materials: Use and Characterisation
24: Manipulation of Nanoscale Materials: An Introduction to Nanoarchitectonics
25: Towards Efficient Designing of Safe Nanomaterials: Innovative Merge of Computational Approaches and Experimental Techniques
26: Polymer–Graphene Nanocomposites
27: Carbon Nanotube-Polymer Composites
28: Nanoscience for the Conservation of Works of Art
29: Polymer Nanofibers: Building Blocks for Nanotechnology
30: Artificial Cilia
31: Nanodiamond
32: Nanofabrication and its Application in Renewable Energy
33: Semiconductor Quantum Dots: Organometallic and Inorganic Synthesis
34: Soft Nanoparticles for Biomedical Applications
35: Hierarchical Nanostructures for Energy Devices
36: Microfluidics for Medical Applications

How to obtain future titles on publication:
A standing order plan is available for this series. A standing order will bring delivery of each new volume immediately on publication.

For further information please contact:
Book Sales Department, Royal Society of Chemistry, Thomas Graham House, Science Park, Milton Road, Cambridge, CB4 0WF, UK
Telephone: +44 (0)1223 420066, Fax: +44 (0)1223 420247
Email: booksales@rsc.org
Visit our website at www.rsc.org/books
Microfluidics for Medical Applications

Edited by

Albert van den Berg
University of Twente, Enschede, The Netherlands
Email: A.vandenBerg@ewi.utwente.nl

Loes Segerink
University of Twente, Enschede, The Netherlands
Email: l.i.segerink@utwente.nl
Contents

Chapter 1 Microtechnologies in the Fabrication of Fibers for Tissue Engineering 1
Mohsen Akbari, Ali Tamayol, Nasim Annabi, David Juncker and Ali Khademhosseini

1.1 Introduction 1
1.2 Fiber Formation Techniques 2
 1.2.1 Co-axial Flow Systems 2
1.3 Wetspinning 7
1.4 Meltspinning (Extrusion) 10
1.5 Electrospinning 12
1.6 Conclusions 15
Acknowledgements 16
References 16

Chapter 2 Kidney on a Chip 19
Laura Ha, Kyung-Jin Jang and Kahp-Yang Suh

2.1 Introduction 19
2.2 Kidney Structure and Function 20
2.3 Mimicking Kidney Environment 22
 2.3.1 Extracellular Matrix 22
 2.3.2 Mechanical Stimulation 23
 2.3.3 Various Kidney Cells 24
 2.3.4 Extracellular Environment 27
2.4 Kidney on a Chip 28
 2.4.1 Microfluidic Approach for Kidney on a Chip 28
 2.4.2 Fabrication of Kidney on a Chip 28
 2.4.3 Various Kidney Chips 30
Chapter 3 Blood-brain Barrier (BBB): An Overview of the Research of the Blood-brain Barrier Using Microfluidic Devices

Andries D. van der Meer, Floor Wolbers, István Vermes and Albert van den Berg

3.1 Introduction

3.2 Blood-brain Barrier

3.2.1 Neurovascular Unit

3.2.2 Transport

3.2.3 Multidrug Resistance

3.2.4 Neurodegenerative Diseases – Loss of BBB Function

3.3 Modeling the BBB in Vitro

3.3.1 Microfluidic in Vitro Models of the BBB: the “BBB-on-Chip”

3.3.2 Cellular Engineering

3.3.3 Biochemical Engineering

3.3.4 Biophysical Engineering

3.4 Measurement Techniques

3.4.1 Transendothelial Electrical Resistance

3.4.2 Permeability

3.4.3 Fluorescence Microscopy

3.5 Conclusion and Future Prospects

Acknowledgements

References

Chapter 4 The Use of Microfluidic-based Neuronal Cell Cultures to Study Alzheimer’s Disease

Robert Meissner and Philippe Renaud

4.1 Alzheimer’s Disease – Increased Mortality Rates and Still Incurable

4.2 Unknowns of Alzheimer’s Disease

4.2.1 Molecular Key Players of AD

4.2.2 From Molecules to Neuronal Networks

4.3 Why Microsystems May Be a Key in Understanding the Propagation of AD

4.3.1 Requirements for in Vitro Studies on AD Progression

4.3.2 Establishing Ordered Neuronal Cultures with Microfluidics

4.4 Micro-devices-based in Vitro Alzheimer Models
Contents

4.4.1 First Microtechnology-based Experimental Models 71

4.4.2 Requirements of Future Micro-device-based Studies 74

4.5 Questions that May Be Addressed by Micro-controlled Cultures 76

References 77

Chapter 5 Microbubbles for Medical Applications 81
Tim Segers, Nico de Jong, Detlef Lohse and Michel Versluis

5.1 Introduction 81

5.1.1 Microbubbles for Imaging 82

5.1.2 Microbubbles for Therapy 83

5.1.3 Microbubbles for Cleaning 84

5.2 Microbubble Basics 86

5.2.1 Microbubble Dynamics 86

5.3 Microbubble Stability 89

5.4 Microbubble Formation 91

5.5 Microbubble Modeling and Characterization 93

5.5.1 Optical Characterization 95

5.5.2 Sorting Techniques 95

5.5.3 Acoustical Characterization 95

5.6 Conclusions 97

Acknowledgements 98

References 98

Chapter 6 Magnetic Particle Actuation in Stationary Microfluidics for Integrated Lab-on-Chip Biosensors 102
Alexander van Reenen, Arthur M. de Jong, Jaap M. J. den Toonder and Menno W. J. Prins

6.1 Introduction 102

6.2 Capture of Analyte Using Magnetic Particles 105

6.2.1 The Analyte Capture Process 106

6.2.2 Analyte Capture Using Magnetic Particles in a Static Fluid 108

6.3 Analyte Detection 112

6.3.1 Magnetic Particles as Carriers 112

6.3.2 Agglutination Assay with Magnetic Particles 115

6.3.3 Surface-binding Assay with Magnetic Particles as Labels 117

6.3.4 Magnetic Stringency 120

6.4 Integration of Magnetic Actuation Processes 122

6.5 Conclusions 125

References 98
Chapter 7 Microfluidics for Assisted Reproductive Technologies 131
David Lai, Joyce Han-Ching Chiu, Gary D. Smith and Shuichi Takayama

7.1 Introduction 131
7.2 Gamete Manipulations 132
 7.2.1 Male Gamete Sorting 133
 7.2.2 Female Gamete Quality Assessment 137
7.3 In Vitro Fertilization 139
7.4 Cryopreservation 141
7.5 Embryo Culture 144
7.6 Embryo Analysis 146
7.7 Conclusion 148
References 148

Chapter 8 Microfluidic Diagnostics for Low-resource Settings: Improving Global Health without a Power Cord 151
Joshua R. Buser, Carly A. Holstein and Paul Yager

8.1 Introduction: Need for Diagnostics in Low-resource Settings 151
 8.1.1 Importance of Diagnostic Testing 151
 8.1.2 Limitations in Low-resource Settings 152
 8.1.3 Scope of Chapter 152
8.2 Types of Diagnostic Testing Needed in Low-resource Settings 153
 8.2.1 Diagnosing Disease 153
 8.2.2 Monitoring Disease 158
 8.2.3 Counterfeit Drug Testing 161
 8.2.4 Environmental Testing 162
8.3 Overview of Microfluidic Diagnostics for Use at the Point of Care 162
 8.3.1 Channel-based Microfluidics 163
 8.3.2 Paper-based Microfluidics 164
8.4 Enabling All Aspects of Diagnostic Testing in Low-resource Settings: Examples of and Opportunities for Microfluidics (Channel-based and Paper-based) 171
 8.4.1 Transportation and Storage of Devices in Low-resource Settings 172
 8.4.2 Specimen Collection 173
 8.4.3 Sample Preparation 174
 8.4.4 Running the Assay 176
Chapter 9 Isolation and Characterization of Circulating Tumor Cells
Yoonsun Yang and Leon W. M. M. Terstappen

9.1 Introduction 191
9.2 CTC Definition in CellSearch System 192
9.3 Clinical Relevance of CTCs 193
9.4 Identification of Treatment Targets on CTCs 195
9.5 Technologies for CTC Enumeration 196
9.6 Isolation and Identification of CTCs in Microfluidic Devices 199
 9.6.1 Microfluidic Devices for CTC Isolation Based on Physical Properties 200
 9.6.2 Microfluidic Devices to Isolate CTCs Based on Immunological Properties 202
 9.6.3 Microfluidic Devices to Isolate CTCs Based on Physical as well as Immunological Properties 204
 9.6.4 Characterization of CTCs in Microfluidic Devices 204
9.7 Summary and Outlook 205
References 207

Chapter 10 Microfluidic Impedance Cytometry for Blood Cell Analysis
Hywel Morgan and Daniel Spencer

10.1 Introduction 213
10.2 The Full Blood Count 217
 10.2.1 Clinical Diagnosis and the Full Blood Count 217
 10.2.2 Commercial FBC Devices 219
10.3 Microfluidic Impedance Cytometry (MIC) 220
 10.3.1 Measurement Principle 221
 10.3.2 Behavior of Cells in AC fields 222
 10.3.3 Sizing Particles 225
 10.3.4 Cell Membrane Capacitance Measurements 226
 10.3.5 Microfluidic FBC Chip 227
 10.3.6 Accuracy and Resolution 229
 10.3.7 Antibody Detection 232
10.4 Further Applications of MIC

10.4.1 Cell Counting and Viability

10.4.2 Parasitized Cells

10.4.3 Tumor Cells and Stem Cell Morphology

10.4.4 High-frequency Measurements

10.5 Future Challenges

References

Chapter 11 Routine Clinical Laboratory Diagnostics Using Point of Care or Lab on a Chip Technology

Gábor L. Kovács and István Vermes

11.1 Introduction

11.2 Point-of-care Testing

11.2.1 Categorization of POCT Devices

11.2.2 Role of POCT in Laboratory Medicine

11.3 Glucometers

11.3.1 The WHO and ADA Criteria of Diabetes

11.3.2 Plasma Glucose or Blood Glucose

11.3.3 Glucometers in Medical Practice

11.3.4 Glucometers in Gestational Diabetes

11.3.5 Continuous Glucose Monitoring

11.4 i-STAT: a Multi-parameter Unit-use POCT Instrument

11.4.1 Clinical Chemistry

11.4.2 Cardiac Markers

11.4.3 Hematology

11.4.4 Clinical Use and Performance

11.5 Conclusions

References

Chapter 12 Medimate Minilab, a Microchip Capillary Electrophoresis Self-test Platform

Steven S. Staal, Mathijn C. Ungerer, Kris L. L. Movig, Jody A. Bartholomew, Hans Krabbe and Jan C. T. Eijkel

12.1 Introduction

12.2 Microfluidic Capillary Electrophoresis as a Self-test Platform

12.2.1 Conducting a Measurement

12.2.2 Measurement Process

12.2.3 From Research Technology to Self-test Platform

12.3 A Lithium Self-test for Patients with Manic Depressive Illness
Contents

12.4 Validation Method 269
12.4.1 Applied Guidelines 269
12.4.2 Acceptance Criteria 270
12.4.3 Sample Availability, Preparation, and other Considerations 272
12.5 Validation Results 273
12.5.1 Reproducibility 273
12.5.2 Linearity 274
12.5.3 Method Comparison 276
12.5.4 Home Test 277
12.5.5 Other Study Results 280
12.5.6 Final Evaluation 282
12.6 Platform Potential 282
12.6.1 Current Platform Capabilities 282
12.6.2 Future Possibilities and Limitations 286
12.7 Conclusions 286
Acknowledgements 287
References 287

Subject Index

289